HTTP 200 OK
Allow: GET, POST, OPTIONS
Content-Type: application/json
Vary: Accept
{
"count": 7868,
"next": "https://metax.fairdata.fi/v3/datasets?format=api&limit=20&offset=1140",
"previous": "https://metax.fairdata.fi/v3/datasets?format=api&limit=20&offset=1100",
"results": [
{
"id": "7379a50d-831a-41b3-9fcd-f85203d3c024",
"access_rights": {
"id": "4bb78789-7c8a-46a8-b62f-4159478b1d10",
"license": [
{
"id": "35b18e72-3819-4ec6-a1be-14624f29d968",
"url": "http://uri.suomi.fi/codelist/fairdata/license/code/CC-BY-4.0",
"in_scheme": "http://uri.suomi.fi/codelist/fairdata/license",
"pref_label": {
"en": "Creative Commons Attribution 4.0 International (CC BY 4.0)",
"fi": "Creative Commons Nimeä 4.0 Kansainvälinen (CC BY 4.0)"
}
}
],
"access_type": {
"id": "d01ac02c-fc70-4c68-9434-8383cb693ff0",
"url": "http://uri.suomi.fi/codelist/fairdata/access_type/code/open",
"in_scheme": "http://uri.suomi.fi/codelist/fairdata/access_type",
"pref_label": {
"en": "Open",
"fi": "Avoin"
}
},
"restriction_grounds": []
},
"actors": [
{
"id": "84fc26a0-e4fa-4d1a-9a80-58d6ad4cffd7",
"roles": [
"creator"
],
"person": {
"id": "bd83e979-076e-44c3-8b93-dc11b3f10d20",
"name": "Annika Stuke",
"external_identifier": "https://orcid.org/"
},
"organization": {
"id": "bc4c943c-ddaa-4195-aaaa-6d97aa34d359",
"pref_label": {
"en": "Department of Applied Physics",
"fi": "Department of Applied Physics",
"sv": "Department of Applied Physics",
"und": "Department of Applied Physics"
},
"url": "http://uri.suomi.fi/codelist/fairdata/organization/code/10076-T304",
"in_scheme": "http://uri.suomi.fi/codelist/fairdata/organization",
"parent": {
"id": "7d61af1c-0cc6-46fe-9940-21da2b080cb3",
"pref_label": {
"en": "Aalto University",
"fi": "Aalto-yliopisto",
"sv": "Aalto-universitetet",
"und": "Aalto-yliopisto"
},
"url": "http://uri.suomi.fi/codelist/fairdata/organization/code/10076",
"in_scheme": "http://uri.suomi.fi/codelist/fairdata/organization"
}
}
},
{
"id": "3c492b49-631d-4592-a516-614d122fea69",
"roles": [
"publisher"
],
"organization": {
"id": "78ec4423-f2ab-4408-bfe8-80e1394d35b4",
"pref_label": {
"en": "NOMAD Repository",
"fi": "NOMAD Repository",
"sv": "NOMAD Repository"
}
}
}
],
"cumulative_state": 0,
"data_catalog": "urn:nbn:fi:att:data-catalog-acris",
"description": {
"en": "This is a dataset from Nomad repository."
},
"field_of_science": [
{
"id": "7e12a692-26de-4e3c-b28c-64f8a32ef40a",
"url": "http://www.yso.fi/onto/okm-tieteenala/ta114",
"in_scheme": "http://www.yso.fi/onto/okm-tieteenala/conceptscheme",
"pref_label": {
"en": "Physical sciences",
"fi": "Fysiikka",
"sv": "Fysik"
}
}
],
"infrastructure": [],
"issued": "2019-01-01",
"keyword": [],
"language": [],
"metadata_owner": {
"id": "ac3f9596-0e50-4ac1-9c16-1e143e4e60b5",
"organization": "aalto.fi",
"admin_organization": "aalto.fi"
},
"other_identifiers": [],
"persistent_identifier": "10.17172/nomad/2019.12.10-6",
"pid_generated_by_fairdata": false,
"projects": [],
"provenance": [],
"relation": [],
"remote_resources": [
{
"title": {
"en": "Data in remote location",
"fi": "Aineisto ulkoisessa palvelussa",
"sv": "Material i en extern tjänst",
"und": "Data in remote location"
},
"use_category": {
"id": "d91e6ce8-6567-441e-96e8-9d706570a677",
"url": "http://uri.suomi.fi/codelist/fairdata/use_category/code/source",
"in_scheme": "http://uri.suomi.fi/codelist/fairdata/use_category",
"pref_label": {
"en": "Source material",
"fi": "Lähdeaineisto"
}
},
"download_url": "https://nomad-lab.eu/prod/v1/gui/dataset/doi/10.17172/NOMAD/2019.12.10-6"
}
],
"spatial": [],
"state": "published",
"temporal": [],
"theme": [],
"title": {
"en": "NOMAD Repository Entry"
},
"created": "2025-11-17T11:07:15Z",
"modified": "2025-11-17T11:07:15Z",
"dataset_versions": [
{
"id": "7379a50d-831a-41b3-9fcd-f85203d3c024",
"title": {
"en": "NOMAD Repository Entry"
},
"persistent_identifier": "10.17172/nomad/2019.12.10-6",
"state": "published",
"created": "2025-11-17T11:07:15Z",
"version": 1
}
],
"published_revision": 1,
"version": 1,
"api_version": 3,
"metadata_repository": "Fairdata"
},
{
"id": "6e226965-8e2e-4957-b860-a7bdd02eb5eb",
"access_rights": {
"id": "9b9fdece-934f-4b05-b4c0-81dce517fddc",
"license": [
{
"id": "35b18e72-3819-4ec6-a1be-14624f29d968",
"url": "http://uri.suomi.fi/codelist/fairdata/license/code/CC-BY-4.0",
"in_scheme": "http://uri.suomi.fi/codelist/fairdata/license",
"pref_label": {
"en": "Creative Commons Attribution 4.0 International (CC BY 4.0)",
"fi": "Creative Commons Nimeä 4.0 Kansainvälinen (CC BY 4.0)"
}
}
],
"access_type": {
"id": "d01ac02c-fc70-4c68-9434-8383cb693ff0",
"url": "http://uri.suomi.fi/codelist/fairdata/access_type/code/open",
"in_scheme": "http://uri.suomi.fi/codelist/fairdata/access_type",
"pref_label": {
"en": "Open",
"fi": "Avoin"
}
},
"restriction_grounds": []
},
"actors": [
{
"id": "98c735ab-54fc-4d85-9055-4632fa58547b",
"roles": [
"contributor"
],
"person": {
"id": "8258b073-777a-4a76-8a9c-19511a5b33ba",
"name": "Jouni Polkko",
"external_identifier": "https://orcid.org/"
},
"organization": {
"id": "e1f68f4e-9e4c-4a67-93ea-7cb490420d51",
"pref_label": {
"en": "Finnish Meteorological Institute",
"fi": "Finnish Meteorological Institute",
"sv": "Finnish Meteorological Institute"
}
}
},
{
"id": "b2390c5e-c887-4e14-b7f4-c422e1603bd1",
"roles": [
"creator"
],
"person": {
"id": "5ba59b6e-3b57-4e4b-a9d7-b1f877cf1c68",
"name": "Henrik Kahanpää",
"external_identifier": "https://orcid.org/"
},
"organization": {
"id": "8807c162-eb34-42ca-9199-a348e03b480d",
"pref_label": {
"en": "Department of Electronics and Nanoengineering",
"fi": "Department of Electronics and Nanoengineering",
"sv": "Department of Electronics and Nanoengineering",
"und": "Department of Electronics and Nanoengineering"
},
"url": "http://uri.suomi.fi/codelist/fairdata/organization/code/10076-T411",
"in_scheme": "http://uri.suomi.fi/codelist/fairdata/organization",
"parent": {
"id": "7d61af1c-0cc6-46fe-9940-21da2b080cb3",
"pref_label": {
"en": "Aalto University",
"fi": "Aalto-yliopisto",
"sv": "Aalto-universitetet",
"und": "Aalto-yliopisto"
},
"url": "http://uri.suomi.fi/codelist/fairdata/organization/code/10076",
"in_scheme": "http://uri.suomi.fi/codelist/fairdata/organization"
}
}
},
{
"id": "f740a114-bb02-4dad-933f-327518fb2251",
"roles": [
"contributor"
],
"person": {
"id": "e317aa3b-3e37-43f1-b584-b548b4f2077e",
"name": "Michael Daly"
},
"organization": {
"id": "a43c953b-e402-4c0e-92c0-870e49a28586",
"pref_label": {
"en": "York University Toronto",
"fi": "York University Toronto",
"sv": "York University Toronto"
}
}
},
{
"id": "3846de92-6c82-4b98-b92e-d75c9c5556bf",
"roles": [
"publisher"
],
"organization": {
"id": "ea21abc7-9f41-416a-be19-e08fc7335336",
"pref_label": {
"en": "Mendeley Data",
"fi": "Mendeley Data",
"sv": "Mendeley Data"
}
}
}
],
"cumulative_state": 0,
"data_catalog": "urn:nbn:fi:att:data-catalog-acris",
"description": {
"en": "The final corrected data of the MET-P instrument of NASAs Mars Phoenix lander.\r\nBoth files contain the same data in different formats. In the CVS file, columns are separated by semicolons.\r\nSyntax explained in the beginning of the data files."
},
"field_of_science": [
{
"id": "cacc7fcf-c79b-4033-9a2e-196c023fe379",
"url": "http://www.yso.fi/onto/okm-tieteenala/ta115",
"in_scheme": "http://www.yso.fi/onto/okm-tieteenala/conceptscheme",
"pref_label": {
"en": "Astronomy, Space science",
"fi": "Avaruustieteet ja tähtitiede",
"sv": "Rymdvetenskap och astronomi"
}
}
],
"infrastructure": [],
"issued": "2020-01-01",
"keyword": [],
"language": [],
"metadata_owner": {
"id": "ac3f9596-0e50-4ac1-9c16-1e143e4e60b5",
"organization": "aalto.fi",
"admin_organization": "aalto.fi"
},
"other_identifiers": [],
"persistent_identifier": "10.17632/3yn4rhzp3m.1",
"pid_generated_by_fairdata": false,
"projects": [],
"provenance": [],
"relation": [],
"remote_resources": [
{
"title": {
"en": "Data in remote location",
"fi": "Aineisto ulkoisessa palvelussa",
"sv": "Material i en extern tjänst",
"und": "Data in remote location"
},
"use_category": {
"id": "d91e6ce8-6567-441e-96e8-9d706570a677",
"url": "http://uri.suomi.fi/codelist/fairdata/use_category/code/source",
"in_scheme": "http://uri.suomi.fi/codelist/fairdata/use_category",
"pref_label": {
"en": "Source material",
"fi": "Lähdeaineisto"
}
},
"download_url": "https://data.mendeley.com/datasets/3yn4rhzp3m"
}
],
"spatial": [],
"state": "published",
"temporal": [],
"theme": [],
"title": {
"en": "Online Resource 1 for \"The Quality of the Mars Phoenix Pressure Data\""
},
"created": "2025-11-17T11:07:12Z",
"modified": "2025-11-17T11:07:12Z",
"dataset_versions": [
{
"id": "6e226965-8e2e-4957-b860-a7bdd02eb5eb",
"title": {
"en": "Online Resource 1 for \"The Quality of the Mars Phoenix Pressure Data\""
},
"persistent_identifier": "10.17632/3yn4rhzp3m.1",
"state": "published",
"created": "2025-11-17T11:07:12Z",
"version": 1
}
],
"published_revision": 1,
"version": 1,
"api_version": 3,
"metadata_repository": "Fairdata"
},
{
"id": "c3f496b8-3872-44df-a640-d952aa9d09d7",
"access_rights": {
"id": "c4ca4989-2673-4acf-be57-12626da4ef30",
"license": [
{
"id": "6142d0c6-945d-4085-b9f7-81e52afa253b",
"custom_url": "https://opensource.org/licenses/MIT",
"url": "http://uri.suomi.fi/codelist/fairdata/license/code/other",
"in_scheme": "http://uri.suomi.fi/codelist/fairdata/license",
"pref_label": {
"en": "Other",
"fi": "Muu"
}
}
],
"access_type": {
"id": "d01ac02c-fc70-4c68-9434-8383cb693ff0",
"url": "http://uri.suomi.fi/codelist/fairdata/access_type/code/open",
"in_scheme": "http://uri.suomi.fi/codelist/fairdata/access_type",
"pref_label": {
"en": "Open",
"fi": "Avoin"
}
},
"restriction_grounds": []
},
"actors": [
{
"id": "1863a705-4f96-4c26-a724-59e824d38f48",
"roles": [
"creator"
],
"person": {
"id": "7433bed3-94f0-4a9a-86b0-3919d82515d6",
"name": "Anton von Schantz",
"external_identifier": "https://orcid.org/0000-0001-8164-4497"
},
"organization": {
"id": "9e2e5601-7fd3-4370-ab08-259dd1f40996",
"pref_label": {
"en": "Department of Mathematics and Systems Analysis",
"fi": "Department of Mathematics and Systems Analysis",
"sv": "Department of Mathematics and Systems Analysis",
"und": "Department of Mathematics and Systems Analysis"
},
"url": "http://uri.suomi.fi/codelist/fairdata/organization/code/10076-T302",
"in_scheme": "http://uri.suomi.fi/codelist/fairdata/organization",
"parent": {
"id": "7d61af1c-0cc6-46fe-9940-21da2b080cb3",
"pref_label": {
"en": "Aalto University",
"fi": "Aalto-yliopisto",
"sv": "Aalto-universitetet",
"und": "Aalto-yliopisto"
},
"url": "http://uri.suomi.fi/codelist/fairdata/organization/code/10076",
"in_scheme": "http://uri.suomi.fi/codelist/fairdata/organization"
}
}
},
{
"id": "4612a290-88df-4942-9a15-2f667894b187",
"roles": [
"publisher"
],
"organization": {
"id": "d621cdb2-7479-4826-84f2-e6b63abffbc3",
"pref_label": {
"en": "Zenodo",
"fi": "Zenodo",
"sv": "Zenodo"
}
}
}
],
"cumulative_state": 0,
"data_catalog": "urn:nbn:fi:att:data-catalog-acris",
"description": {
"en": "Research code and data used in von Schantz & Ehtamo. Minimizing the evacuation time of a crowd from a complex building using rescue guides. arXiv:2007.00509 [physics.soc-ph]. 2020. (submitted manuscript).\r\n\r\nThe paper presents a procedure for solving the minimum time evacuation from a complex building using rescue guides, and this repository is its implementation. The crowd is modeled with the physics-inspired agent-based social force model. The solution procedure is a combined numerical simulation and genetic algorithm (GA). The GA iteratively searches for the optimal evacuation plan, while numerical simulations are used to evaluate candidate evacuation plans.\r\n\r\nThe numerical evacuation simulations are implemented in Python and the GA as Bash scripts that were run on a high performance computing cluster. It should be noted that the procedure is currently computationally very demanding. The repository includes codes for the GA, evacuation simulation and its graphical user interface. For further implementation information, see the associated Github repository https://github.com/antonvs88/optimal-guided-evacuation.\r\n\r\nThe numerical evacuation simulation codes are based on Jaan Tollander de Balsch's codes https://github.com/jaantollander/crowddynamics and https://github.com/jaantollander/crowddynamics-qtgui, which he created working as a summer assistant in our research group in Aalto University School of Science, Department of Mathematics and Systems Analysis years 2016 and 2017.\r\n\r\nThe folders in the repository:\r\n* crowddynamics-simulation contains files for running the GUI\r\n* crowddynamics-qtgui contains the files that build the GUI\r\n* crowddynamics contains all files for simulating the movement of a crowd\r\n* data includes simulation data from running the genetic algorithm\r\n* genetic algorithm includes files to run the genetic algorithm\r\n* simulation files includes files specific for the simulating the conference building and hexagon-shaped area\r\n\r\nNote! Some necessary files where missing in the earlier versions. Version 1.2 has all the files needed."
},
"field_of_science": [
{
"id": "33d291b9-9b23-4192-b878-cffc210af1d3",
"url": "http://www.yso.fi/onto/okm-tieteenala/ta113",
"in_scheme": "http://www.yso.fi/onto/okm-tieteenala/conceptscheme",
"pref_label": {
"en": "Computer and information sciences",
"fi": "Tietojenkäsittely ja informaatiotieteet",
"sv": "Data- och informationsvetenskap"
}
}
],
"infrastructure": [],
"issued": "2020-01-01",
"keyword": [],
"language": [],
"metadata_owner": {
"id": "ac3f9596-0e50-4ac1-9c16-1e143e4e60b5",
"organization": "aalto.fi",
"admin_organization": "aalto.fi"
},
"other_identifiers": [],
"persistent_identifier": "10.5281/zenodo.3518164",
"pid_generated_by_fairdata": false,
"projects": [],
"provenance": [],
"relation": [],
"remote_resources": [
{
"title": {
"en": "Data in remote location",
"fi": "Aineisto ulkoisessa palvelussa",
"sv": "Material i en extern tjänst",
"und": "Data in remote location"
},
"use_category": {
"id": "d91e6ce8-6567-441e-96e8-9d706570a677",
"url": "http://uri.suomi.fi/codelist/fairdata/use_category/code/source",
"in_scheme": "http://uri.suomi.fi/codelist/fairdata/use_category",
"pref_label": {
"en": "Source material",
"fi": "Lähdeaineisto"
}
},
"download_url": "https://zenodo.org/record/3831338"
}
],
"spatial": [],
"state": "published",
"temporal": [],
"theme": [],
"title": {
"en": "Minimizing the evacuation time of a crowd from a complex building using rescue guides – code"
},
"created": "2025-11-17T11:07:10Z",
"modified": "2025-11-17T11:07:10Z",
"dataset_versions": [
{
"id": "c3f496b8-3872-44df-a640-d952aa9d09d7",
"title": {
"en": "Minimizing the evacuation time of a crowd from a complex building using rescue guides – code"
},
"persistent_identifier": "10.5281/zenodo.3518164",
"state": "published",
"created": "2025-11-17T11:07:10Z",
"version": 1
}
],
"published_revision": 1,
"version": 1,
"api_version": 3,
"metadata_repository": "Fairdata"
},
{
"id": "b102a6e8-0ab4-4b45-97ed-6c4a8f5f0210",
"access_rights": {
"id": "59209e97-02b2-4086-9cec-1fb7394f1c15",
"license": [
{
"id": "60ce96ab-a581-4225-a652-bad746a435a2",
"url": "http://uri.suomi.fi/codelist/fairdata/license/code/notspecified",
"in_scheme": "http://uri.suomi.fi/codelist/fairdata/license",
"pref_label": {
"en": "License Not Specified",
"fi": "Ei määritelty"
}
}
],
"access_type": {
"id": "d01ac02c-fc70-4c68-9434-8383cb693ff0",
"url": "http://uri.suomi.fi/codelist/fairdata/access_type/code/open",
"in_scheme": "http://uri.suomi.fi/codelist/fairdata/access_type",
"pref_label": {
"en": "Open",
"fi": "Avoin"
}
},
"restriction_grounds": []
},
"actors": [
{
"id": "dfc03c57-9792-4a9c-832b-23f790cef0c1",
"roles": [
"contributor"
],
"person": {
"id": "4833ac31-461b-4f9c-b5ee-f9b67972a0d2",
"name": "Lauros Pajunen"
},
"organization": {
"id": "09664979-01cc-4aff-9671-8a176d0b9ec7",
"pref_label": {
"en": "Department of Signal Processing and Acoustics",
"fi": "Department of Signal Processing and Acoustics",
"sv": "Department of Signal Processing and Acoustics",
"und": "Department of Signal Processing and Acoustics"
},
"url": "http://uri.suomi.fi/codelist/fairdata/organization/code/10076-T405",
"in_scheme": "http://uri.suomi.fi/codelist/fairdata/organization",
"parent": {
"id": "7d61af1c-0cc6-46fe-9940-21da2b080cb3",
"pref_label": {
"en": "Aalto University",
"fi": "Aalto-yliopisto",
"sv": "Aalto-universitetet",
"und": "Aalto-yliopisto"
},
"url": "http://uri.suomi.fi/codelist/fairdata/organization/code/10076",
"in_scheme": "http://uri.suomi.fi/codelist/fairdata/organization"
}
}
},
{
"id": "a9815c94-6e37-4108-b516-6feb8209082a",
"roles": [
"creator"
],
"person": {
"id": "00fe0ff7-b703-459d-94dd-2bcbfa7fb01a",
"name": "Archontis Politis",
"external_identifier": "https://orcid.org/"
},
"organization": {
"id": "09664979-01cc-4aff-9671-8a176d0b9ec7",
"pref_label": {
"en": "Department of Signal Processing and Acoustics",
"fi": "Department of Signal Processing and Acoustics",
"sv": "Department of Signal Processing and Acoustics",
"und": "Department of Signal Processing and Acoustics"
},
"url": "http://uri.suomi.fi/codelist/fairdata/organization/code/10076-T405",
"in_scheme": "http://uri.suomi.fi/codelist/fairdata/organization",
"parent": {
"id": "7d61af1c-0cc6-46fe-9940-21da2b080cb3",
"pref_label": {
"en": "Aalto University",
"fi": "Aalto-yliopisto",
"sv": "Aalto-universitetet",
"und": "Aalto-yliopisto"
},
"url": "http://uri.suomi.fi/codelist/fairdata/organization/code/10076",
"in_scheme": "http://uri.suomi.fi/codelist/fairdata/organization"
}
}
},
{
"id": "dae85f3e-ef81-46fd-ab7e-200306dc399b",
"roles": [
"publisher"
],
"organization": {
"id": "524387b5-4a0c-4ea0-b5df-1b91b62b98a1",
"pref_label": {
"en": "Zenodo",
"fi": "Zenodo",
"sv": "Zenodo"
}
}
}
],
"cumulative_state": 0,
"data_catalog": "urn:nbn:fi:att:data-catalog-acris",
"description": {
"en": "A library for analysing the effects of a rigid spherical scatterer in spatial audio fields created by virtual loudspeakers. This Matlab library was developed during master's thesis research in the Department of Signal Processing and Acoustics, Aalto University, Finland. The thesis [1] is available through Aalto University's websites. This library also complements the related convention paper [2].\r\n\r\nAuthors\r\n\r\nLauros Pajunen - Initial work\r\nArchontis Politis - Implementations of pressure and velocity field calculations\r\n\r\n\r\nReferences\r\n\r\n[1] Pajunen, L., 2019,\r\n Effects of a rigid spherical scatterer in spatial audio reproduction fields.\r\n Master's thesis, Aalto University, Espoo, Finland.\r\n\r\n[2] Pajunen, L., Politis, A., Pulkki, V., Vaalgamaa, M., Strömmer, S., 2020,\r\n Effects of rigid spherical scatterer on spatial audio reproduction quality.\r\n Submitted for Audio Engineering Society Convention 148.\r\nThe title and description of this software/code correspond with the situation when the software metadata was imported to ACRIS. The most recent version of metadata is available in the original repository"
},
"field_of_science": [
{
"id": "5b789f2f-f545-497c-8354-c21a6718c723",
"url": "http://www.yso.fi/onto/okm-tieteenala/ta213",
"in_scheme": "http://www.yso.fi/onto/okm-tieteenala/conceptscheme",
"pref_label": {
"en": "Electronic, automation and communications engineering, electronics",
"fi": "Sähkö-, automaatio- ja tietoliikennetekniikka, elektroniikka",
"sv": "El-, automations- och telekommunikationsteknik, elektronik"
}
}
],
"infrastructure": [],
"issued": "2020-01-01",
"keyword": [],
"language": [],
"metadata_owner": {
"id": "ac3f9596-0e50-4ac1-9c16-1e143e4e60b5",
"organization": "aalto.fi",
"admin_organization": "aalto.fi"
},
"other_identifiers": [],
"persistent_identifier": "10.5281/zenodo.3597182",
"pid_generated_by_fairdata": false,
"projects": [],
"provenance": [],
"relation": [],
"remote_resources": [
{
"title": {
"en": "Data in remote location",
"fi": "Aineisto ulkoisessa palvelussa",
"sv": "Material i en extern tjänst",
"und": "Data in remote location"
},
"use_category": {
"id": "d91e6ce8-6567-441e-96e8-9d706570a677",
"url": "http://uri.suomi.fi/codelist/fairdata/use_category/code/source",
"in_scheme": "http://uri.suomi.fi/codelist/fairdata/use_category",
"pref_label": {
"en": "Source material",
"fi": "Lähdeaineisto"
}
},
"download_url": "https://zenodo.org/record/3597182"
}
],
"spatial": [],
"state": "published",
"temporal": [],
"theme": [],
"title": {
"en": "Spherical-scatterer-effects"
},
"created": "2025-11-17T11:07:07Z",
"modified": "2025-11-17T11:07:07Z",
"dataset_versions": [
{
"id": "b102a6e8-0ab4-4b45-97ed-6c4a8f5f0210",
"title": {
"en": "Spherical-scatterer-effects"
},
"persistent_identifier": "10.5281/zenodo.3597182",
"state": "published",
"created": "2025-11-17T11:07:07Z",
"version": 1
}
],
"published_revision": 1,
"version": 1,
"api_version": 3,
"metadata_repository": "Fairdata"
},
{
"id": "282f1a92-e6bf-49b8-add1-0ee11a40c0f5",
"access_rights": {
"id": "0b4ed0a0-8508-47e3-b8a6-a56243af0c9f",
"license": [
{
"id": "60ce96ab-a581-4225-a652-bad746a435a2",
"url": "http://uri.suomi.fi/codelist/fairdata/license/code/notspecified",
"in_scheme": "http://uri.suomi.fi/codelist/fairdata/license",
"pref_label": {
"en": "License Not Specified",
"fi": "Ei määritelty"
}
}
],
"access_type": {
"id": "d01ac02c-fc70-4c68-9434-8383cb693ff0",
"url": "http://uri.suomi.fi/codelist/fairdata/access_type/code/open",
"in_scheme": "http://uri.suomi.fi/codelist/fairdata/access_type",
"pref_label": {
"en": "Open",
"fi": "Avoin"
}
},
"restriction_grounds": []
},
"actors": [
{
"id": "86dadfc0-f224-4941-a896-0d588f203cd2",
"roles": [
"creator"
],
"person": {
"id": "e0e2b219-8388-44e6-9f63-d12e0a7278b4",
"name": "Benjamin Batiot"
},
"organization": {
"id": "0d089f13-bd49-43a9-a802-d01138a99d21",
"pref_label": {
"en": "Université de Poitiers",
"fi": "Université de Poitiers",
"sv": "Université de Poitiers"
}
}
},
{
"id": "228d3880-a481-411b-9208-22b8f61e59cf",
"roles": [
"creator"
],
"person": {
"id": "ff9ae6f4-5ae0-4291-a3af-af174ac7bc49",
"name": "Morgan Bruns"
},
"organization": {
"id": "d3b9bbc5-43a9-48a3-a16d-5b729f425484",
"pref_label": {
"en": "St Mary's University College Belfast",
"fi": "St Mary's University College, Belfast",
"sv": "St Mary's University College, Belfast"
}
}
},
{
"id": "144cc4c3-8be6-4cd0-9185-e730df013b7b",
"roles": [
"creator"
],
"person": {
"id": "b10ecf57-1c93-4692-a7da-57fed74a9f55",
"name": "Simo Hostikka",
"external_identifier": "https://orcid.org/0000-0002-3581-1677"
},
"organization": {
"id": "71980f6a-a717-47f6-a340-9e4455a8a666",
"pref_label": {
"en": "Department of Civil Engineering",
"fi": "Department of Civil Engineering",
"sv": "Department of Civil Engineering",
"und": "Department of Civil Engineering"
},
"url": "http://uri.suomi.fi/codelist/fairdata/organization/code/10076-T214",
"in_scheme": "http://uri.suomi.fi/codelist/fairdata/organization",
"parent": {
"id": "7d61af1c-0cc6-46fe-9940-21da2b080cb3",
"pref_label": {
"en": "Aalto University",
"fi": "Aalto-yliopisto",
"sv": "Aalto-universitetet",
"und": "Aalto-yliopisto"
},
"url": "http://uri.suomi.fi/codelist/fairdata/organization/code/10076",
"in_scheme": "http://uri.suomi.fi/codelist/fairdata/organization"
}
}
},
{
"id": "f56cbf0f-a3cc-46b5-b4d0-9cd568bc31e1",
"roles": [
"creator"
],
"person": {
"id": "f6375616-bd12-4de4-a36b-f337c9b506d6",
"name": "Isaac Leventon"
},
"organization": {
"id": "9b363458-c82a-496c-ba37-4e33f6478f76",
"pref_label": {
"en": "National Institute of Standards and Technology NIST",
"fi": "National Institute of Standards and Technology",
"sv": "National Institute of Standards and Technology"
}
}
},
{
"id": "9eea2b5c-2d5b-47f9-8110-3a69efeb6245",
"roles": [
"creator"
],
"person": {
"id": "f0222eb0-3c5c-4b82-89b4-04698ab3f5d7",
"name": "Yuji Nakamura"
},
"organization": {
"id": "ee51a8a1-03da-4ce6-ad49-b27af118ce42",
"pref_label": {
"en": "Toyohashi University of Technology",
"fi": "Toyohashi University of Technology",
"sv": "Toyohashi University of Technology"
}
}
},
{
"id": "71cb51ee-a5e7-4b74-b618-719c8c59c78e",
"roles": [
"creator"
],
"person": {
"id": "fd0dcb3c-6eb8-4c2e-82b3-d976b632669f",
"name": "Thomas Rogaume"
},
"organization": {
"id": "0d089f13-bd49-43a9-a802-d01138a99d21",
"pref_label": {
"en": "Université de Poitiers",
"fi": "Université de Poitiers",
"sv": "Université de Poitiers"
}
}
},
{
"id": "232d5496-25fc-4179-b197-cb17196a2c34",
"roles": [
"creator"
],
"person": {
"id": "ee36d9cb-17ac-4680-a070-66fb9f89d682",
"name": "Stanislav Stoliarov"
},
"organization": {
"id": "019df080-a665-416b-9332-5becd3843416",
"pref_label": {
"en": "Queen Mary University of London",
"fi": "Queen Mary University of London",
"sv": "Queen Mary University of London"
}
}
},
{
"id": "7c021407-3d5b-4ad5-a8c9-ff8d1282ede4",
"roles": [
"publisher"
],
"organization": {
"id": "646f467e-3164-41bb-805b-dd950768306f",
"pref_label": {
"en": "National Institute of Standards and Technology (NIST)",
"fi": "National Institute of Standards and Technology (NIST)",
"sv": "National Institute of Standards and Technology (NIST)"
}
}
}
],
"cumulative_state": 0,
"data_catalog": "urn:nbn:fi:att:data-catalog-acris",
"description": {
"en": "The MaCFP Condensed Phase Subgroup has been designed to enable the fire research community to make significant progress towards establishing a common framework for the selection of experiments and the methodologies used to analyze these experiments when developing pyrolysis models. Experimental measurements prepared for the MaCFP Condensed Phase Working Group are submitted electronically by participating institutions and are organized and made publicly available in the MaCFP repository, which is hosted on GitHub [https://github.com/MaCFP/matl-db] This database is version controlled, with each addition to (or edit of) measurement data saved with a unique identifier (i.e., commit tag). The repository was created and is managed by members of the MaCFP Organizing Committee.\r\nAs of October, 2021, the MaCFP Condensed Phase Material Database contains measurement data from more than 200 unique experiments (conducted under 35 different test conditions on the same exact poly(methyl methacrylate), PMMA). All measurement data submitted by each institution is organized in a single folder with the institution's name. A consistent file naming convention is used for all test data (i.e., across all folders). File names indicate the institution name, experimental apparatus, and basic test conditions (e.g., gaseous environment and incident heat flux or heating rate). Measurement data from repeated experiments is saved in separate, ASCII comma-delimited (.csv) files, each numbered sequentially. Written description of sample preparation, test setup, and test procedure (which define the conditions associated with the experiments conducted) are included in each folder as a README.md file; this file is automatically interpreted by GitHub as Markdown (.md) text and provides a brief description of an institution's data."
},
"field_of_science": [
{
"id": "58c407dd-b614-4d38-a92a-e6d9cdff7814",
"url": "http://www.yso.fi/onto/okm-tieteenala/ta216",
"in_scheme": "http://www.yso.fi/onto/okm-tieteenala/conceptscheme",
"pref_label": {
"en": "Materials engineering",
"fi": "Materiaalitekniikka",
"sv": "Materialteknik"
}
}
],
"infrastructure": [],
"issued": "2021-01-01",
"keyword": [],
"language": [],
"metadata_owner": {
"id": "ac3f9596-0e50-4ac1-9c16-1e143e4e60b5",
"organization": "aalto.fi",
"admin_organization": "aalto.fi"
},
"other_identifiers": [],
"persistent_identifier": "10.18434/mds2-2586",
"pid_generated_by_fairdata": false,
"projects": [],
"provenance": [],
"relation": [],
"remote_resources": [
{
"title": {
"en": "Data in remote location",
"fi": "Aineisto ulkoisessa palvelussa",
"sv": "Material i en extern tjänst",
"und": "Data in remote location"
},
"use_category": {
"id": "d91e6ce8-6567-441e-96e8-9d706570a677",
"url": "http://uri.suomi.fi/codelist/fairdata/use_category/code/source",
"in_scheme": "http://uri.suomi.fi/codelist/fairdata/use_category",
"pref_label": {
"en": "Source material",
"fi": "Lähdeaineisto"
}
},
"download_url": "https://data.nist.gov/od/id/mds2-2586"
}
],
"spatial": [],
"state": "published",
"temporal": [],
"theme": [],
"title": {
"en": "Measurement and Computation of Fire Phenomena (MaCFP) Condensed Phase Material Database"
},
"created": "2025-11-17T11:07:04Z",
"modified": "2025-11-17T11:07:04Z",
"dataset_versions": [
{
"id": "282f1a92-e6bf-49b8-add1-0ee11a40c0f5",
"title": {
"en": "Measurement and Computation of Fire Phenomena (MaCFP) Condensed Phase Material Database"
},
"persistent_identifier": "10.18434/mds2-2586",
"state": "published",
"created": "2025-11-17T11:07:04Z",
"version": 1
}
],
"published_revision": 1,
"version": 1,
"api_version": 3,
"metadata_repository": "Fairdata"
},
{
"id": "983f8b48-4980-4007-abd5-eb36563a68f6",
"access_rights": {
"id": "325861ef-7ee3-46d9-8a88-08e55fd89f9e",
"license": [
{
"id": "35b18e72-3819-4ec6-a1be-14624f29d968",
"url": "http://uri.suomi.fi/codelist/fairdata/license/code/CC-BY-4.0",
"in_scheme": "http://uri.suomi.fi/codelist/fairdata/license",
"pref_label": {
"en": "Creative Commons Attribution 4.0 International (CC BY 4.0)",
"fi": "Creative Commons Nimeä 4.0 Kansainvälinen (CC BY 4.0)"
}
}
],
"access_type": {
"id": "d01ac02c-fc70-4c68-9434-8383cb693ff0",
"url": "http://uri.suomi.fi/codelist/fairdata/access_type/code/open",
"in_scheme": "http://uri.suomi.fi/codelist/fairdata/access_type",
"pref_label": {
"en": "Open",
"fi": "Avoin"
}
},
"restriction_grounds": []
},
"actors": [
{
"id": "4b3b7098-eab7-46d2-9920-2c248cddc692",
"roles": [
"creator"
],
"person": {
"id": "688028af-8cdf-4688-a624-c5e90bb17938",
"name": "Huynh Quang Nguyen Vo"
},
"organization": {
"id": "09664979-01cc-4aff-9671-8a176d0b9ec7",
"pref_label": {
"en": "Department of Signal Processing and Acoustics",
"fi": "Department of Signal Processing and Acoustics",
"sv": "Department of Signal Processing and Acoustics",
"und": "Department of Signal Processing and Acoustics"
},
"url": "http://uri.suomi.fi/codelist/fairdata/organization/code/10076-T405",
"in_scheme": "http://uri.suomi.fi/codelist/fairdata/organization",
"parent": {
"id": "7d61af1c-0cc6-46fe-9940-21da2b080cb3",
"pref_label": {
"en": "Aalto University",
"fi": "Aalto-yliopisto",
"sv": "Aalto-universitetet",
"und": "Aalto-yliopisto"
},
"url": "http://uri.suomi.fi/codelist/fairdata/organization/code/10076",
"in_scheme": "http://uri.suomi.fi/codelist/fairdata/organization"
}
}
},
{
"id": "1f34571f-d979-4013-b572-c9b807d2970a",
"roles": [
"publisher"
],
"organization": {
"id": "89969255-8160-42c7-8c5f-bf33e264753f",
"pref_label": {
"en": "Zenodo",
"fi": "Zenodo",
"sv": "Zenodo"
}
}
}
],
"cumulative_state": 0,
"data_catalog": "urn:nbn:fi:att:data-catalog-acris",
"description": {
"en": "1. Introduction\r\n\r\nThese files contain the proposed implementation for benchmarking to evaluate whether a setup of hardware is feasible for complex deep learning projects.\r\n\r\n2. Scope \r\n\r\n\r\n\tThe benchmark evaluates the performance of a setup having a single CPU, a single GPU, RAM and memory storage. The performance of multi-CPUs/multi-GPUs or server-based is included in our scope.\r\n\tThe benchmark is built on the Anaconda distribution of Python, and the Jupyter Notebook computational environment. The deep learning models mentioned in this benchmarked are implemented using the Keras application programming interface (API).\r\n\r\nThe title and description of this software/code correspond with the situation when the software metadata was imported to ACRIS. The most recent version of metadata is available in the original repository.\r\n\tOur goal is to develop a verified approach to conduct the hardware benchmark that is quick and easy to use. To do so, we provide benchmarking programs as well as the installation guide for Anaconda and deep learning-supported packages.\r\n\r\n\r\n3. Evaluation metrics\r\n\r\n There are various metrics to benchmark the performance capabilities of a setup for deep learning purposes. Here, the following metrics are used:\r\n\r\n\r\n\tTotal execution time: the total execution time includes both the total training time and the total validation time of a deep learning model on a dataset after a defined number of epochs. Here, the number of epochs is 100. The lower the total execution time the better.\r\n\tTotal inference time: the total inference time includes both the model loading time (the time required to fully load a set of pre-trained weights to implement a model) and the total prediction time of a deep learning model on a test dataset. Similar to the total execution time, the lower the total inference time the better.\r\n\tFLOPS: the performance capability of a CPU or GPU can be measured by counting the number of floating operation points (FLO) it can execute per second. Thus, the higher the FLOPS, the better.\r\n\tComputing resources issues/errors: Ideally, a better-performed setup will not encounter any computing resources issues/errors including but not limited to the Out-Of-Memory (OOM) error.\r\n\tBottlenecking: to put it simply, bottlenecking is a subpar performance that is caused by the inability of one component to keep up with the others, thus slowing down the overall ability of a setup to process data. Here, our primary concern is the bottlenecking between CPU and GPU. The bottlenecking factor is measured using an online tool: Bottleneck Calculator\r\n\r\n\r\n 4. Methods\r\n\r\n\r\n\tTo evaluate the hardware performance, two deep learning models are deployed for benchmarking purpose. The first model is a modified VGG19 based on a study by Deitsch et al. (Model A) [1], and the other model is a modified concatenated model proposed in a study from Rahimzadeh et al. (Model B) [2]. These models were previously implemented in Vo et al [3]. The model compilation, training and validation practices are similar to those mentioned in Vo et al [3]. Besides, several optimization practices such as mixed precision policy are applied for model training to make it run faster and consume less memory. The following datasets are used for benchmarking: the original MNIST dataset by LeCun et al., and the Zalando MNIST dataset by Xiao et al.\r\n\tOn the other hand, we also proposed another approach for benchmarking that is much simpler and quicker: evaluating the total execution time for a combination of basic operations. These basic operations include General Matrix to Matrix Multiplication (GEMM), 2D-Convolution (Convolve2D) and Recurrent Neural Network (RNN), and exist in almost all deep neural networks today [4]. We implemented our alternative approach based on the DeepBench work by Baidu [5]:\r\n\t\r\n\t\tIn DMM, we defined matrix C as a product of (MxN) and (NxK) matrices. For example, (3072,128,1024) means the resulting matrix is a product of (3072x128) and (128x1024) matrices. To benchmark, we implemented five different multiplications and measured the overall total execution time of these five. These multiplications included (3072,128,1024), (5124,9124,2560), (2560,64,2560), (7860,64,2560), and (1760,128,1760).\r\n\t\tIn SMM, we defined matrix C as a product of (MxN) and (NxK) matrices, and (100 - Dx100)% of the (MxN) matrix is omitted. For instance, (10752,1,3584,0.9) means the resulting matrix is a product of (10752x1) and (1x3584) matrices, while 10% of the (10752x1) matrix is omitted. To benchmark, we implemented four different multiplications and measured the overall total execution time of these five. These multiplications included (10752,1,3584,0.9), (7680,1500,2560,0.95), (7680,2,2560,0.95), and (7680,1,2560,0.95).\r\n\t\tIn Convolve2D, we defined a simple model containing only convolution layers and pooling layers and measured the resulting total execution time. The dataset used for this training this model is the Zalando MNIST by Xiao et al.\r\n\t\tWe did not implement the RNN due to several issues caused by the new version of Keras.\r\n\t\r\n\t\r\n\tTo evaluate total inference time, we loaded the already trained weights from our models (denoted as Model A-benchmarked and Model B-benchmarked, respectively) which has the best validation accuracy and conducted a prediction run on the test set from the Zalando MNIST. These files are available on Zenodo: Inference Models\r\n\r\n\r\n5. References\r\n\r\n\r\n\t[1] S. Deitsch, V. Christlein, S. Berger, C. Buerhop-Lutz, A. Maier, F. Gallwitz, and C. Riess, “Automatic classification of defective photovoltaic module cells in electroluminescence images,” Solar Energy, vol. 185, p. 455–468, 06-2019\r\n\t[2] M. Rahimzadeh and A. Attar, “A modified deep convolutional neural network for detecting COVID-19 and pneumonia from chest X-ray images based on the concatenation of Xception and ResNet50V2,” Informatics in MedicineUnlocked, vol. 19, p. 100360, 2020.\r\n\t[3] H. Vo, “Realization and Verification of Deep Learning Models for FaultDetection and Diagnosis of Photovoltaic Modules,” Master’s Thesis, Aalto University. School of Electrical Engineering, 2021.\r\n\t[4] P. Warden, \"Why GEMM is at the heart of deep learning,\" Pete Warden's Blog, 2015. Available at: https://petewarden.com/2015/04/20/why-gemm-is-at-the-heart-of-deep-learning/\r\n\t[5] Baidu Research, \"Benchmarking Deep Learning operations on different hardware\". Available at: https://github.com/baidu-research/DeepBench\r\n\t[6] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner, \"Gradient-based learning applied to document recognition,\" Proceedings of the IEEE, 1998.\r\n\t[7] Xiao, K. Rasul, and R. Vollgraf, “A Novel Image Dataset for Benchmarking Machine Learning Algorithms,” 2017. https://github.com/zalandoresearch/fashion-mnist\r\n\t[8] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion,O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vander-plas, A. Passos, D. Cournapeau, M. Brucher, M. Perrot, and E. Duchesnay,“Scikit-learn: Machine learning in Python,” Journal of Machine Learning Research, vol. 12, pp. 2825–2830, 2011.\r\n\t[9] F. Chollet, “Keras,” 2015. Available at: https://github.com/fchollet/keras\r\n\t[10] ML Commons. Available at: https://mlcommons.org/en/\r\n\t[11] W. Dai and D. Berleant, “Benchmarking contemporary deep learning hardware and frameworks: A survey of qualitative metrics,” 2019 IEEE First International Conference on Cognitive Machine Intelligence (CogMI), Dec 2019."
},
"field_of_science": [
{
"id": "5b789f2f-f545-497c-8354-c21a6718c723",
"url": "http://www.yso.fi/onto/okm-tieteenala/ta213",
"in_scheme": "http://www.yso.fi/onto/okm-tieteenala/conceptscheme",
"pref_label": {
"en": "Electronic, automation and communications engineering, electronics",
"fi": "Sähkö-, automaatio- ja tietoliikennetekniikka, elektroniikka",
"sv": "El-, automations- och telekommunikationsteknik, elektronik"
}
}
],
"infrastructure": [],
"issued": "2021-01-01",
"keyword": [],
"language": [],
"metadata_owner": {
"id": "ac3f9596-0e50-4ac1-9c16-1e143e4e60b5",
"organization": "aalto.fi",
"admin_organization": "aalto.fi"
},
"other_identifiers": [],
"persistent_identifier": "10.5281/zenodo.4905213",
"pid_generated_by_fairdata": false,
"projects": [],
"provenance": [],
"relation": [],
"remote_resources": [
{
"title": {
"en": "Data in remote location",
"fi": "Aineisto ulkoisessa palvelussa",
"sv": "Material i en extern tjänst",
"und": "Data in remote location"
},
"use_category": {
"id": "d91e6ce8-6567-441e-96e8-9d706570a677",
"url": "http://uri.suomi.fi/codelist/fairdata/use_category/code/source",
"in_scheme": "http://uri.suomi.fi/codelist/fairdata/use_category",
"pref_label": {
"en": "Source material",
"fi": "Lähdeaineisto"
}
},
"download_url": "https://zenodo.org/record/4905213"
}
],
"spatial": [],
"state": "published",
"temporal": [],
"theme": [],
"title": {
"en": "Hardware Benchmark for Deep Learning Capability"
},
"created": "2025-11-17T11:07:01Z",
"modified": "2025-11-17T11:07:01Z",
"dataset_versions": [
{
"id": "983f8b48-4980-4007-abd5-eb36563a68f6",
"title": {
"en": "Hardware Benchmark for Deep Learning Capability"
},
"persistent_identifier": "10.5281/zenodo.4905213",
"state": "published",
"created": "2025-11-17T11:07:01Z",
"version": 1
}
],
"published_revision": 1,
"version": 1,
"api_version": 3,
"metadata_repository": "Fairdata"
},
{
"id": "83e0c699-89e2-43b0-91cd-5b8dd7670302",
"access_rights": {
"id": "0df973d4-2dbf-4cf0-919d-647f1a729f3b",
"license": [
{
"id": "35b18e72-3819-4ec6-a1be-14624f29d968",
"url": "http://uri.suomi.fi/codelist/fairdata/license/code/CC-BY-4.0",
"in_scheme": "http://uri.suomi.fi/codelist/fairdata/license",
"pref_label": {
"en": "Creative Commons Attribution 4.0 International (CC BY 4.0)",
"fi": "Creative Commons Nimeä 4.0 Kansainvälinen (CC BY 4.0)"
}
}
],
"access_type": {
"id": "d01ac02c-fc70-4c68-9434-8383cb693ff0",
"url": "http://uri.suomi.fi/codelist/fairdata/access_type/code/open",
"in_scheme": "http://uri.suomi.fi/codelist/fairdata/access_type",
"pref_label": {
"en": "Open",
"fi": "Avoin"
}
},
"restriction_grounds": []
},
"actors": [
{
"id": "a9df6592-4adf-43a5-ab0e-32b1f09a50ca",
"roles": [
"creator"
],
"person": {
"id": "cff1349f-d7d7-48b0-b5c9-544598883ad6",
"name": "Heikki Muhli",
"external_identifier": "https://orcid.org/"
},
"organization": {
"id": "bc4c943c-ddaa-4195-aaaa-6d97aa34d359",
"pref_label": {
"en": "Department of Applied Physics",
"fi": "Department of Applied Physics",
"sv": "Department of Applied Physics",
"und": "Department of Applied Physics"
},
"url": "http://uri.suomi.fi/codelist/fairdata/organization/code/10076-T304",
"in_scheme": "http://uri.suomi.fi/codelist/fairdata/organization",
"parent": {
"id": "7d61af1c-0cc6-46fe-9940-21da2b080cb3",
"pref_label": {
"en": "Aalto University",
"fi": "Aalto-yliopisto",
"sv": "Aalto-universitetet",
"und": "Aalto-yliopisto"
},
"url": "http://uri.suomi.fi/codelist/fairdata/organization/code/10076",
"in_scheme": "http://uri.suomi.fi/codelist/fairdata/organization"
}
}
},
{
"id": "0973acef-fb2a-419e-b283-beb1c745a4d9",
"roles": [
"contributor"
],
"person": {
"id": "d85bc126-0258-4bbc-9cc6-56967daf52d4",
"name": "Miguel A. Caro",
"external_identifier": "https://orcid.org/0000-0001-9304-4261"
},
"organization": {
"id": "95abf2df-1315-49ce-9a86-cbc93b1e0aa7",
"pref_label": {
"en": "Department of Electrical Engineering and Automation",
"fi": "Department of Electrical Engineering and Automation",
"sv": "Department of Electrical Engineering and Automation",
"und": "Department of Electrical Engineering and Automation"
},
"url": "http://uri.suomi.fi/codelist/fairdata/organization/code/10076-T410",
"in_scheme": "http://uri.suomi.fi/codelist/fairdata/organization",
"parent": {
"id": "7d61af1c-0cc6-46fe-9940-21da2b080cb3",
"pref_label": {
"en": "Aalto University",
"fi": "Aalto-yliopisto",
"sv": "Aalto-universitetet",
"und": "Aalto-yliopisto"
},
"url": "http://uri.suomi.fi/codelist/fairdata/organization/code/10076",
"in_scheme": "http://uri.suomi.fi/codelist/fairdata/organization"
}
}
},
{
"id": "84cab86a-63cb-4725-8ac6-c5ddcc96da61",
"roles": [
"publisher"
],
"organization": {
"id": "1a89043c-024b-4318-9e99-7ba8fd0539c0",
"pref_label": {
"en": "Zenodo",
"fi": "Zenodo",
"sv": "Zenodo"
}
}
}
],
"cumulative_state": 0,
"data_catalog": "urn:nbn:fi:att:data-catalog-acris",
"description": {
"en": "This is a Gaussian approximation potential (GAP [1]) for carbon. The potential can be used to model general carbon systems, but is particularly geared towards modeling systems containing C60 molecules and graphitic carbons. It has been fitted with QUIP/GAP [1,2] by recomputing the a-C database of Deringer and Csányi [3] at the PBE level of theory [4] using the VASP code [5,6]. The a-C database from [3] has been augmented significantly to include other atomic structures, namely:\r\n\r\n\r\n\tDimers at closer interatomic separation than in [3]\r\n\tTrimers\r\n\tGraphite and graphene (including bilayer graphene) throughout the entire exfoliation curve at different levels of biaxial strain\r\n\tGlassy carbon\r\n\tIsolated strained and distorted C60 molecules, interacting C60 dimers and colliding C60 dimers\r\n\tDifferent surface reconstructions of diamond\r\n\r\n\r\nThe main technical novelty introduced in this potential is van der Waals (vdW) corrections at different levels. It incorporates vdW corrections at the Tkatchenko-Scheffler (TS) level of theory [7] via a new machine learning based local parametrization of dispersion interactions. Environment independent (\"fixed C6\") vdW corrections can also be used (mostly for banchmarking, since the new TS approach is superior). Check the comments in the gap_files/carbon.gap file for details.\r\n\r\nFor the underlying PBE fit, this potential uses 2-body (distance_2b) and 3-body (angle_3b) descriptors [3] plus SOAP-type descriptors (soap_turbo) [8,9], as implemented in the TurboGAP code [10]. For the Hirshfeld volume fit, the potential reuses the soap_turbo descriptors for computational efficiency. The files can be used both with QUIP/GAP (compiled with the TurboGAP libraries) and TurboGAP.\r\n\r\nThe authors acknowledge funding from the Academy of Finland (grants 321713, 329483 and 330488) and computational resources from the Finnish Center for Scientific Computing (CSC) and Aalto University's Science IT project.\r\n\r\nMore details can be found in this paper:\r\n\r\n\r\nMachine learning force fields based on local parametrization of dispersion interactions: Application to the phase diagram of C60\r\nHeikki Muhli, Xi Chen, Albert P. Bartók, Patricia Hernández-León, Gábor Csányi, Tapio Ala-Nissila, and Miguel A. Caro\r\nPhys. Rev. B 104, 054106 (2021)\r\n\r\n\r\nReferences\r\n\r\n\r\n\tA.P. Bartók, M.C. Payne, R. Kondor, and G. Csányi. Phys. Rev. Lett. 104, 136403 (2010).\r\n\tLibAtoms: https://libatoms.github.io\r\n\tV.L. Deringer and G. Csányi. Phys. Rev. B 95, 094203 (2017).\r\n\tJ.P. Perdew, K. Burke, and M. Ernzerhof. Phys Rev. Lett. 77, 3865 (1996).\r\n\tVASP: http://vasp.at\r\n\tG. Kresse and J. Furthmüller. Phys. Rev. B 54, 11169 (1996).\r\n\tA. Tkatchenko and M. Scheffler. Phys. Rev. Lett. 102, 073005 (2009).\r\n\tA.P. Bartók, R. Kondor, and G. Csányi. Phys. Rev. B 87, 184115 (2013).\r\n\tM.A. Caro. Phys. Rev. B 100, 024112 (2019).\r\n\tTurboGAP: http://turbogap.fi\r\n\r\n\r\nContact\r\n\r\nMiguel A. Caro: mcaroba@gmail.com or miguel.caro@aalto.fi"
},
"field_of_science": [
{
"id": "7e12a692-26de-4e3c-b28c-64f8a32ef40a",
"url": "http://www.yso.fi/onto/okm-tieteenala/ta114",
"in_scheme": "http://www.yso.fi/onto/okm-tieteenala/conceptscheme",
"pref_label": {
"en": "Physical sciences",
"fi": "Fysiikka",
"sv": "Fysik"
}
}
],
"infrastructure": [],
"issued": "2021-01-01",
"keyword": [],
"language": [],
"metadata_owner": {
"id": "ac3f9596-0e50-4ac1-9c16-1e143e4e60b5",
"organization": "aalto.fi",
"admin_organization": "aalto.fi"
},
"other_identifiers": [],
"persistent_identifier": "10.5281/zenodo.4616343",
"pid_generated_by_fairdata": false,
"projects": [],
"provenance": [],
"relation": [],
"remote_resources": [
{
"title": {
"en": "Data in remote location",
"fi": "Aineisto ulkoisessa palvelussa",
"sv": "Material i en extern tjänst",
"und": "Data in remote location"
},
"use_category": {
"id": "d91e6ce8-6567-441e-96e8-9d706570a677",
"url": "http://uri.suomi.fi/codelist/fairdata/use_category/code/source",
"in_scheme": "http://uri.suomi.fi/codelist/fairdata/use_category",
"pref_label": {
"en": "Source material",
"fi": "Lähdeaineisto"
}
},
"download_url": "https://zenodo.org/record/4616343"
}
],
"spatial": [],
"state": "published",
"temporal": [],
"theme": [],
"title": {
"en": "GAP interatomic potential for C60"
},
"created": "2025-11-17T11:06:57Z",
"modified": "2025-11-17T11:06:57Z",
"dataset_versions": [
{
"id": "83e0c699-89e2-43b0-91cd-5b8dd7670302",
"title": {
"en": "GAP interatomic potential for C60"
},
"persistent_identifier": "10.5281/zenodo.4616343",
"state": "published",
"created": "2025-11-17T11:06:57Z",
"version": 1
}
],
"published_revision": 1,
"version": 1,
"api_version": 3,
"metadata_repository": "Fairdata"
},
{
"id": "b7ce5f27-f89f-46b9-bd92-f32379beb464",
"access_rights": {
"id": "48d0bdd6-53ea-4bd4-9669-f939ba743827",
"license": [
{
"id": "9f8e151c-af07-44f6-8104-a30b68fc2b3c",
"url": "http://uri.suomi.fi/codelist/fairdata/license/code/CC0-1.0",
"in_scheme": "http://uri.suomi.fi/codelist/fairdata/license",
"pref_label": {
"en": "Creative Commons CC0 1.0 Universal (CC0 1.0) Public Domain Dedication",
"fi": "Creative Commons Yleismaailmallinen (CC0 1.0) Public Domain -lausuma"
}
}
],
"access_type": {
"id": "d01ac02c-fc70-4c68-9434-8383cb693ff0",
"url": "http://uri.suomi.fi/codelist/fairdata/access_type/code/open",
"in_scheme": "http://uri.suomi.fi/codelist/fairdata/access_type",
"pref_label": {
"en": "Open",
"fi": "Avoin"
}
},
"restriction_grounds": []
},
"actors": [
{
"id": "0518931f-ebcb-4026-aaf7-071306114472",
"roles": [
"creator"
],
"person": {
"id": "23362026-82ae-4c0c-bd51-5b46516f3de6",
"name": "Bram Van Moorter"
},
"organization": {
"id": "71394958-cfe3-442f-ab78-4be7861c4d89",
"pref_label": {
"en": "Norwegian Institute for Nature Research",
"fi": "Norwegian Institute for Nature Research",
"sv": "Norwegian Institute for Nature Research"
}
}
},
{
"id": "b1dd325c-7590-4347-8ffe-755734f13e1e",
"roles": [
"creator"
],
"person": {
"id": "6fdf8566-8a87-42fb-96c3-701841f5a3f4",
"name": "Ilkka Kivimäki",
"external_identifier": "https://orcid.org/"
},
"organization": {
"id": "c7963c8c-37b7-4962-84a4-4fe651b4ccb7",
"pref_label": {
"en": "Department of Computer Science",
"fi": "Department of Computer Science",
"sv": "Department of Computer Science",
"und": "Department of Computer Science"
},
"url": "http://uri.suomi.fi/codelist/fairdata/organization/code/10076-T313",
"in_scheme": "http://uri.suomi.fi/codelist/fairdata/organization",
"parent": {
"id": "7d61af1c-0cc6-46fe-9940-21da2b080cb3",
"pref_label": {
"en": "Aalto University",
"fi": "Aalto-yliopisto",
"sv": "Aalto-universitetet",
"und": "Aalto-yliopisto"
},
"url": "http://uri.suomi.fi/codelist/fairdata/organization/code/10076",
"in_scheme": "http://uri.suomi.fi/codelist/fairdata/organization"
}
}
},
{
"id": "db2cfd5b-6e4c-4c56-8d4c-3bb3b2385f41",
"roles": [
"creator"
],
"person": {
"id": "38c5f949-de7d-466f-acae-a1bb6a32ee81",
"name": "Manuela Panzacchi"
},
"organization": {
"id": "71394958-cfe3-442f-ab78-4be7861c4d89",
"pref_label": {
"en": "Norwegian Institute for Nature Research",
"fi": "Norwegian Institute for Nature Research",
"sv": "Norwegian Institute for Nature Research"
}
}
},
{
"id": "97b10e9b-be07-4307-86ff-77ced52a38a7",
"roles": [
"creator"
],
"person": {
"id": "99d680d2-f6a8-4065-b48c-0dd6bacb40be",
"name": "Marco Saerens"
},
"organization": {
"id": "85b79a61-f390-47b0-8dd2-5f093e24bb3b",
"pref_label": {
"en": "Université Catholique de Louvain",
"fi": "Université Catholique de Louvain",
"sv": "Université Catholique de Louvain"
}
}
},
{
"id": "9036fb01-db46-4d9c-81d4-b7781a83b079",
"roles": [
"publisher"
],
"organization": {
"id": "9525d8f5-4fc9-4412-b4a2-755567f48301",
"pref_label": {
"en": "Dryad Digital Repository",
"fi": "Dryad Digital Repository",
"sv": "Dryad Digital Repository"
}
}
}
],
"cumulative_state": 0,
"data_catalog": "urn:nbn:fi:att:data-catalog-acris",
"description": {
"en": "Demonstration of the workflow and supplementary information on the randomized shortest paths framework for \"Defining and quantifying effective connectivity of landscapes for species’ movements\" by Van Moorter B, Kivimäki I, Panzacchi M, Saerens M. (2021) in Ecography 44(6):1–15. Ecosystem functioning depends on multiple successful interactions, many supported by individual movements. The degree to which the landscape allows these interactions to take place has been referred to as ‘effective connectivity' (EC). Many of the cumulative impacts of anthropogenic activities on ecosystem functioning arise from changes in EC. Therefore, a coherent framework to quantify EC is urgently needed. Recent theoretical developments propose that studying EC requires the simultaneous consideration of spatial, environmental and species intrinsic characteristics (SEI framework). In the paper we further expand the SEI framework by integrating advances in geographic information science, ecological niche modelling, movement ecology, island biogeography and network sciences to develop a comprehensive three-step methodological approach for quantifying EC. First, using niche modelling and movement ecology, we quantify the species movement probabilities with respect to local environmental conditions. Second, we quantify ecological distances between non-adjacent locations by integrating species movement responses to the local environment with the spatial configuration of the landscape using the expected cost obtained from the randomized shortest paths (RSP) framework. This expected cost generalizes the two most frequently used ecological distance metrics, i.e. least-cost distance and resistance distance. Moreover the ‘absorbing random walk' properties of RSP allow the integration of new developments in connectivity research, i.e. spatial absorbing Markov chains, to account for movement-related mortality. Third, drawing from island biogeography and metapopulation ecology, we scale ecological distances by relevant species- and area-specific parameters to estimate EC for the ecological process of interest, e.g. migration, dispersal or gene flow. The integrative and highly interdisciplinary approach we propose can lead to increasingly more realistic measures of EC at different organizational levels. Moreover efficient computation allows its application to large-scale high-resolution landscapes for theoretical studies, conservation planning and sustainable management of real landscapes."
},
"field_of_science": [
{
"id": "33d291b9-9b23-4192-b878-cffc210af1d3",
"url": "http://www.yso.fi/onto/okm-tieteenala/ta113",
"in_scheme": "http://www.yso.fi/onto/okm-tieteenala/conceptscheme",
"pref_label": {
"en": "Computer and information sciences",
"fi": "Tietojenkäsittely ja informaatiotieteet",
"sv": "Data- och informationsvetenskap"
}
}
],
"infrastructure": [],
"issued": "2021-01-01",
"keyword": [],
"language": [],
"metadata_owner": {
"id": "ac3f9596-0e50-4ac1-9c16-1e143e4e60b5",
"organization": "aalto.fi",
"admin_organization": "aalto.fi"
},
"other_identifiers": [],
"persistent_identifier": "10.5061/dryad.wpzgmsbmj",
"pid_generated_by_fairdata": false,
"projects": [],
"provenance": [],
"relation": [],
"remote_resources": [
{
"title": {
"en": "Data in remote location",
"fi": "Aineisto ulkoisessa palvelussa",
"sv": "Material i en extern tjänst",
"und": "Data in remote location"
},
"use_category": {
"id": "d91e6ce8-6567-441e-96e8-9d706570a677",
"url": "http://uri.suomi.fi/codelist/fairdata/use_category/code/source",
"in_scheme": "http://uri.suomi.fi/codelist/fairdata/use_category",
"pref_label": {
"en": "Source material",
"fi": "Lähdeaineisto"
}
},
"download_url": "http://datadryad.org/stash/dataset/doi:10.5061/dryad.wpzgmsbmj"
}
],
"spatial": [],
"state": "published",
"temporal": [],
"theme": [],
"title": {
"en": "Defining and quantifying effective connectivity of landscapes for species' movements"
},
"created": "2025-11-17T11:06:54Z",
"modified": "2025-11-17T11:06:54Z",
"dataset_versions": [
{
"id": "b7ce5f27-f89f-46b9-bd92-f32379beb464",
"title": {
"en": "Defining and quantifying effective connectivity of landscapes for species' movements"
},
"persistent_identifier": "10.5061/dryad.wpzgmsbmj",
"state": "published",
"created": "2025-11-17T11:06:54Z",
"version": 1
}
],
"published_revision": 1,
"version": 1,
"api_version": 3,
"metadata_repository": "Fairdata"
},
{
"id": "e035d80d-2ea0-4252-bc9a-3c1bfce8c433",
"access_rights": {
"id": "5f956a5a-d063-4a46-8e3d-b54c4c60e4a7",
"license": [
{
"id": "35b18e72-3819-4ec6-a1be-14624f29d968",
"url": "http://uri.suomi.fi/codelist/fairdata/license/code/CC-BY-4.0",
"in_scheme": "http://uri.suomi.fi/codelist/fairdata/license",
"pref_label": {
"en": "Creative Commons Attribution 4.0 International (CC BY 4.0)",
"fi": "Creative Commons Nimeä 4.0 Kansainvälinen (CC BY 4.0)"
}
}
],
"access_type": {
"id": "d01ac02c-fc70-4c68-9434-8383cb693ff0",
"url": "http://uri.suomi.fi/codelist/fairdata/access_type/code/open",
"in_scheme": "http://uri.suomi.fi/codelist/fairdata/access_type",
"pref_label": {
"en": "Open",
"fi": "Avoin"
}
},
"restriction_grounds": []
},
"actors": [
{
"id": "f81a518a-e63f-4bdd-88ee-fba85163620d",
"roles": [
"creator"
],
"person": {
"id": "30fe95af-be05-4e7f-b105-769b58b7e3e6",
"name": "Pauli Lehto",
"external_identifier": "https://orcid.org/0000-0002-4689-6063"
},
"organization": {
"id": "ede66a40-3153-4fbe-921c-6b0fe81e5f01",
"pref_label": {
"en": "Department of Energy and Mechanical Engineering",
"fi": "Department of Energy and Mechanical Engineering",
"sv": "Department of Energy and Mechanical Engineering",
"und": "Department of Energy and Mechanical Engineering"
},
"url": "http://uri.suomi.fi/codelist/fairdata/organization/code/10076-T212",
"in_scheme": "http://uri.suomi.fi/codelist/fairdata/organization",
"parent": {
"id": "7d61af1c-0cc6-46fe-9940-21da2b080cb3",
"pref_label": {
"en": "Aalto University",
"fi": "Aalto-yliopisto",
"sv": "Aalto-universitetet",
"und": "Aalto-yliopisto"
},
"url": "http://uri.suomi.fi/codelist/fairdata/organization/code/10076",
"in_scheme": "http://uri.suomi.fi/codelist/fairdata/organization"
}
}
},
{
"id": "8773b534-0316-483e-b107-26bb729008c7",
"roles": [
"publisher"
],
"organization": {
"id": "33bb73ec-57bc-4835-b7f5-d268a6154896",
"pref_label": {
"en": "Zenodo",
"fi": "Zenodo",
"sv": "Zenodo"
}
}
}
],
"cumulative_state": 0,
"data_catalog": "urn:nbn:fi:att:data-catalog-acris",
"description": {
"en": "Example open access datasets for low-alloy structural steel weld metals, previously published in ref. [1]. The datasets are also related to the International Institute of Welding Commission C-IX, document nr. IX-L-1239-2021.\r\n\r\nFiles included:\r\n\r\n\r\n\tThe nomenclature of the files corresponds to what is used in ref. [1].\r\n\tCV_3.crc/cpr: Conventional arc weld, 3/5 mm t-joint\r\n\tHY_1.crc/cpr: Laser-hybrid weld, 3mm butt-joint\r\n\tLA_1.crc/cpr: Laser weld, 3mm butt-joint\r\n\r\n\r\nThe methodology for analysing grain size and dislocation sub-structures is found at: https://zenodo.org/record/5053377 and https://doi.org/10.5281/zenodo.4430623\r\n\r\nFor further information visit: Aalto University Wiki - https://wiki.aalto.fi/display/GSMUM and https://wiki.aalto.fi/display/EMDIDS\r\n\r\nRefererences:\r\n\r\n\r\n\t[1] Materials Science and Engineering: A, 2014; 592: 28-39, http://dx.doi.org/10.1016/j.msea.2013.10.094\r\n\t[2] Welding in the World. 2016; 60: 673-678. http://dx.doi.org/10.1007/s40194-016-0318-8\r\n\t[3] Ultramicroscopy 2021, Volume 222, https://doi.org/10.1016/j.ultramic.2021.113203"
},
"field_of_science": [
{
"id": "c3b20e27-348e-4f23-a9d3-aa1608d225f0",
"url": "http://www.yso.fi/onto/okm-tieteenala/ta214",
"in_scheme": "http://www.yso.fi/onto/okm-tieteenala/conceptscheme",
"pref_label": {
"en": "Mechanical engineering",
"fi": "Kone- ja valmistustekniikka",
"sv": "Maskin- och produktionsteknik"
}
}
],
"infrastructure": [],
"issued": "2021-01-01",
"keyword": [],
"language": [],
"metadata_owner": {
"id": "ac3f9596-0e50-4ac1-9c16-1e143e4e60b5",
"organization": "aalto.fi",
"admin_organization": "aalto.fi"
},
"other_identifiers": [],
"persistent_identifier": "10.5281/zenodo.5054204",
"pid_generated_by_fairdata": false,
"projects": [],
"provenance": [],
"relation": [],
"remote_resources": [
{
"title": {
"en": "Data in remote location",
"fi": "Aineisto ulkoisessa palvelussa",
"sv": "Material i en extern tjänst",
"und": "Data in remote location"
},
"use_category": {
"id": "d91e6ce8-6567-441e-96e8-9d706570a677",
"url": "http://uri.suomi.fi/codelist/fairdata/use_category/code/source",
"in_scheme": "http://uri.suomi.fi/codelist/fairdata/use_category",
"pref_label": {
"en": "Source material",
"fi": "Lähdeaineisto"
}
},
"download_url": "https://zenodo.org/record/5054204"
}
],
"spatial": [],
"state": "published",
"temporal": [],
"theme": [],
"title": {
"en": "EBSD datasets for low-alloy steel weld metals - Arc, Laser, and Laser-hybrid welding"
},
"created": "2025-11-17T11:06:51Z",
"modified": "2025-11-17T11:06:51Z",
"dataset_versions": [
{
"id": "e035d80d-2ea0-4252-bc9a-3c1bfce8c433",
"title": {
"en": "EBSD datasets for low-alloy steel weld metals - Arc, Laser, and Laser-hybrid welding"
},
"persistent_identifier": "10.5281/zenodo.5054204",
"state": "published",
"created": "2025-11-17T11:06:51Z",
"version": 1
}
],
"published_revision": 1,
"version": 1,
"api_version": 3,
"metadata_repository": "Fairdata"
},
{
"id": "772b6874-f866-49ba-9159-5ae95573deb3",
"access_rights": {
"id": "a57cce4a-6c4a-4618-8b4f-6b3a80e38aaf",
"license": [
{
"id": "35b18e72-3819-4ec6-a1be-14624f29d968",
"url": "http://uri.suomi.fi/codelist/fairdata/license/code/CC-BY-4.0",
"in_scheme": "http://uri.suomi.fi/codelist/fairdata/license",
"pref_label": {
"en": "Creative Commons Attribution 4.0 International (CC BY 4.0)",
"fi": "Creative Commons Nimeä 4.0 Kansainvälinen (CC BY 4.0)"
}
}
],
"access_type": {
"id": "d01ac02c-fc70-4c68-9434-8383cb693ff0",
"url": "http://uri.suomi.fi/codelist/fairdata/access_type/code/open",
"in_scheme": "http://uri.suomi.fi/codelist/fairdata/access_type",
"pref_label": {
"en": "Open",
"fi": "Avoin"
}
},
"restriction_grounds": []
},
"actors": [
{
"id": "8065d928-251a-477c-9589-53afc24a02dc",
"roles": [
"creator"
],
"person": {
"id": "6901d49d-6dd8-485c-98c8-170a48e4c330",
"name": "Alejandro Gonzalez-Martinez",
"external_identifier": "https://orcid.org/"
},
"organization": {
"id": "f19743a3-843c-4cb5-ad69-e08d634cabf2",
"pref_label": {
"en": "University of Granada",
"fi": "University of Granada",
"sv": "University of Granada"
}
}
},
{
"id": "b3854eae-b4f2-49de-b3da-dc6c37339743",
"roles": [
"contributor"
],
"person": {
"id": "526cdb36-6036-4b37-a7d0-c0c5566173ef",
"name": "Merja Ahonen"
},
"organization": {
"id": "db4f4f73-c557-497c-9052-8b9600a20b79",
"pref_label": {
"en": "Satakunta University of Applied Sciences",
"fi": "Satakunta University of Applied Sciences",
"sv": "Satakunta University of Applied Sciences"
}
}
},
{
"id": "a7f975f2-f8e7-4fdf-a5b0-1ecc372c269c",
"roles": [
"contributor"
],
"person": {
"id": "5fb79a3b-00e0-4838-a07f-eb3a36bee016",
"name": "Pirjo-Liisa Rantanen",
"external_identifier": "https://orcid.org/0000-0003-1904-5412"
},
"organization": {
"id": "bcf4d306-dcb4-4d5d-b303-c6e0604e27cb",
"pref_label": {
"en": "Department of Built Environment",
"fi": "Department of Built Environment",
"sv": "Department of Built Environment",
"und": "Department of Built Environment"
},
"url": "http://uri.suomi.fi/codelist/fairdata/organization/code/10076-T213",
"in_scheme": "http://uri.suomi.fi/codelist/fairdata/organization",
"parent": {
"id": "7d61af1c-0cc6-46fe-9940-21da2b080cb3",
"pref_label": {
"en": "Aalto University",
"fi": "Aalto-yliopisto",
"sv": "Aalto-universitetet",
"und": "Aalto-yliopisto"
},
"url": "http://uri.suomi.fi/codelist/fairdata/organization/code/10076",
"in_scheme": "http://uri.suomi.fi/codelist/fairdata/organization"
}
}
},
{
"id": "e30bd011-a51c-46f7-9881-d860754d6022",
"roles": [
"contributor"
],
"person": {
"id": "7fa7d67e-476e-4c47-99ec-cbf6a2b96d93",
"name": "Minna M. Keinänen-Toivola"
},
"organization": {
"id": "db4f4f73-c557-497c-9052-8b9600a20b79",
"pref_label": {
"en": "Satakunta University of Applied Sciences",
"fi": "Satakunta University of Applied Sciences",
"sv": "Satakunta University of Applied Sciences"
}
}
},
{
"id": "3735cab0-73f4-45c5-a711-66b58513fc29",
"roles": [
"contributor"
],
"person": {
"id": "05967c14-31a6-4941-9e54-5b349e5e657d",
"name": "Ilkka Mellin",
"external_identifier": "https://orcid.org/"
},
"organization": {
"id": "9e2e5601-7fd3-4370-ab08-259dd1f40996",
"pref_label": {
"en": "Department of Mathematics and Systems Analysis",
"fi": "Department of Mathematics and Systems Analysis",
"sv": "Department of Mathematics and Systems Analysis",
"und": "Department of Mathematics and Systems Analysis"
},
"url": "http://uri.suomi.fi/codelist/fairdata/organization/code/10076-T302",
"in_scheme": "http://uri.suomi.fi/codelist/fairdata/organization",
"parent": {
"id": "7d61af1c-0cc6-46fe-9940-21da2b080cb3",
"pref_label": {
"en": "Aalto University",
"fi": "Aalto-yliopisto",
"sv": "Aalto-universitetet",
"und": "Aalto-yliopisto"
},
"url": "http://uri.suomi.fi/codelist/fairdata/organization/code/10076",
"in_scheme": "http://uri.suomi.fi/codelist/fairdata/organization"
}
}
},
{
"id": "5105e2d2-5922-47b9-99e6-bb73818fe8ae",
"roles": [
"contributor"
],
"person": {
"id": "a39aec4e-b984-4ae6-94db-958ae7f9396d",
"name": "Riku Vahala",
"external_identifier": "https://orcid.org/0000-0003-0026-3831"
},
"organization": {
"id": "bcf4d306-dcb4-4d5d-b303-c6e0604e27cb",
"pref_label": {
"en": "Department of Built Environment",
"fi": "Department of Built Environment",
"sv": "Department of Built Environment",
"und": "Department of Built Environment"
},
"url": "http://uri.suomi.fi/codelist/fairdata/organization/code/10076-T213",
"in_scheme": "http://uri.suomi.fi/codelist/fairdata/organization",
"parent": {
"id": "7d61af1c-0cc6-46fe-9940-21da2b080cb3",
"pref_label": {
"en": "Aalto University",
"fi": "Aalto-yliopisto",
"sv": "Aalto-universitetet",
"und": "Aalto-yliopisto"
},
"url": "http://uri.suomi.fi/codelist/fairdata/organization/code/10076",
"in_scheme": "http://uri.suomi.fi/codelist/fairdata/organization"
}
}
},
{
"id": "0de22fb2-2f6a-46ee-a621-ab08d76f08a1",
"roles": [
"publisher"
],
"organization": {
"id": "8df22b93-db8b-45f4-a2bb-a4bb17670140",
"pref_label": {
"en": "Zenodo",
"fi": "Zenodo",
"sv": "Zenodo"
}
}
}
],
"cumulative_state": 0,
"data_catalog": "urn:nbn:fi:att:data-catalog-acris",
"description": {
"en": "Data concerning the manuscript:\r\n\r\nSmall dose of monochloramine increases nitrite formation via two different routes in water distribution \r\n\r\nPirjo-Liisa Rantanena, Alejandro Gonzalez-Martinezb, Ilkka Mellinc, Riku Vahalaa, Merja Ahonend, Minna M. Keinänen-Toivolae\r\n\r\na Department of Built Environment, Aalto University, PO Box 15200, FI-00076 Aalto, Finland\r\n\r\nb Department of Microbiology, University of Granada, Campus Universitario de Cartuja, 18071 Granada, Spain\r\n\r\nc Department of Mathematics and Systems Analysis, Aalto University, PO Box 11100, FI-00076 Aalto, Finland\r\n\r\nd Faculty of Technology, Satakunta University of Applied Sciences, PO Box 1001, FI-28101 Pori, Finland\r\n\r\ne Office of vice rector on RDI, Satakunta University of Applied Sciences, PO Box 1001, FI-28101 Pori, Finland\r\n\r\nAbstract\r\n\r\nNitrite is potentially harmful to humans and in drinking water its concentrations have a maximum admissible limit in European legislation (0.5 mgN L‑1). In this study, it was conjectured that monochloramine may affect nitrite formation rates indirectly via other routes than merely constituting an ammonium substrate for nitrification when decomposing. The conjecture was tested in laboratory scale by comparing the following conditions with the same initial ammonium concentration: tests with free ammonium, and with free ammonium and a 20% share of ammonium as monochloramine (monochloramine dose of 0.39 mgCl2 L‑1, as median). The nitrification tests were organized consequently in two parallel simulated distribution systems. Monochloramine increased indirectly the apparent nitrite formation rates (2.4 times) and the maximum nitrite peak concentration (1.6 times). According to the pseudo-first order model interpretation, this was primarily due to enhanced ammonium oxidation. Conceivably, the inactivation of monochloramine was mainly targeted to the heterotrophic surface layer of the biofilm, likely enhancing ammonium transfer to ammonium oxidizing bacteria (AOB) below the surface layer. Both ammonium and nitrite oxidizing bacteria were observed in the biofilms confirming nitrification activity; Nitrosomonas sp. 9%–11% and Nitrospira sp. 9%–22%. These results may explain the highest nitrite concentrations observed in drinking water distribution systems (DWDSs) in USA, and the fast formation of nitrite in Finnish DWDSs."
},
"field_of_science": [
{
"id": "5219633e-4362-479e-b8c9-9ee72e7c8bf8",
"url": "http://www.yso.fi/onto/okm-tieteenala/ta218",
"in_scheme": "http://www.yso.fi/onto/okm-tieteenala/conceptscheme",
"pref_label": {
"en": "Environmental engineering",
"fi": "Ympäristötekniikka",
"sv": "Miljöteknik"
}
}
],
"infrastructure": [],
"issued": "2021-01-01",
"keyword": [],
"language": [],
"metadata_owner": {
"id": "ac3f9596-0e50-4ac1-9c16-1e143e4e60b5",
"organization": "aalto.fi",
"admin_organization": "aalto.fi"
},
"other_identifiers": [],
"persistent_identifier": "10.5281/zenodo.5503569",
"pid_generated_by_fairdata": false,
"projects": [],
"provenance": [],
"relation": [],
"remote_resources": [
{
"title": {
"en": "Data in remote location",
"fi": "Aineisto ulkoisessa palvelussa",
"sv": "Material i en extern tjänst",
"und": "Data in remote location"
},
"use_category": {
"id": "d91e6ce8-6567-441e-96e8-9d706570a677",
"url": "http://uri.suomi.fi/codelist/fairdata/use_category/code/source",
"in_scheme": "http://uri.suomi.fi/codelist/fairdata/use_category",
"pref_label": {
"en": "Source material",
"fi": "Lähdeaineisto"
}
},
"download_url": "https://zenodo.org/record/5503569"
}
],
"spatial": [],
"state": "published",
"temporal": [],
"theme": [],
"title": {
"en": "Small dose of monochloramine increases nitrite formation via two different routes in water distribution"
},
"created": "2025-11-17T11:06:47Z",
"modified": "2025-11-17T11:06:47Z",
"dataset_versions": [
{
"id": "772b6874-f866-49ba-9159-5ae95573deb3",
"title": {
"en": "Small dose of monochloramine increases nitrite formation via two different routes in water distribution"
},
"persistent_identifier": "10.5281/zenodo.5503569",
"state": "published",
"created": "2025-11-17T11:06:47Z",
"version": 1
}
],
"published_revision": 1,
"version": 1,
"api_version": 3,
"metadata_repository": "Fairdata"
},
{
"id": "4a2e0a13-cdca-4be3-a4b5-257f37f10e25",
"access_rights": {
"id": "36dacfa7-4f9a-4ddc-8e4b-1626831da040",
"license": [
{
"id": "35b18e72-3819-4ec6-a1be-14624f29d968",
"url": "http://uri.suomi.fi/codelist/fairdata/license/code/CC-BY-4.0",
"in_scheme": "http://uri.suomi.fi/codelist/fairdata/license",
"pref_label": {
"en": "Creative Commons Attribution 4.0 International (CC BY 4.0)",
"fi": "Creative Commons Nimeä 4.0 Kansainvälinen (CC BY 4.0)"
}
}
],
"access_type": {
"id": "d01ac02c-fc70-4c68-9434-8383cb693ff0",
"url": "http://uri.suomi.fi/codelist/fairdata/access_type/code/open",
"in_scheme": "http://uri.suomi.fi/codelist/fairdata/access_type",
"pref_label": {
"en": "Open",
"fi": "Avoin"
}
},
"restriction_grounds": []
},
"actors": [
{
"id": "f9508ef5-b39a-4191-a3f6-cfde365a3f34",
"roles": [
"creator"
],
"person": {
"id": "01cf245b-2667-4e8e-8c27-7c94428c749a",
"name": "Arttu Julin",
"external_identifier": "https://orcid.org/0000-0001-9887-1573"
},
"organization": {
"id": "bcf4d306-dcb4-4d5d-b303-c6e0604e27cb",
"pref_label": {
"en": "Department of Built Environment",
"fi": "Department of Built Environment",
"sv": "Department of Built Environment",
"und": "Department of Built Environment"
},
"url": "http://uri.suomi.fi/codelist/fairdata/organization/code/10076-T213",
"in_scheme": "http://uri.suomi.fi/codelist/fairdata/organization",
"parent": {
"id": "7d61af1c-0cc6-46fe-9940-21da2b080cb3",
"pref_label": {
"en": "Aalto University",
"fi": "Aalto-yliopisto",
"sv": "Aalto-universitetet",
"und": "Aalto-yliopisto"
},
"url": "http://uri.suomi.fi/codelist/fairdata/organization/code/10076",
"in_scheme": "http://uri.suomi.fi/codelist/fairdata/organization"
}
}
},
{
"id": "782236dc-0876-4df3-8f94-f4182ef3de01",
"roles": [
"creator"
],
"person": {
"id": "64c72af3-ece4-491c-ad54-95078f5f98fe",
"name": "Toni Rantanen",
"external_identifier": "https://orcid.org/0000-0002-3781-7204"
},
"organization": {
"id": "bcf4d306-dcb4-4d5d-b303-c6e0604e27cb",
"pref_label": {
"en": "Department of Built Environment",
"fi": "Department of Built Environment",
"sv": "Department of Built Environment",
"und": "Department of Built Environment"
},
"url": "http://uri.suomi.fi/codelist/fairdata/organization/code/10076-T213",
"in_scheme": "http://uri.suomi.fi/codelist/fairdata/organization",
"parent": {
"id": "7d61af1c-0cc6-46fe-9940-21da2b080cb3",
"pref_label": {
"en": "Aalto University",
"fi": "Aalto-yliopisto",
"sv": "Aalto-universitetet",
"und": "Aalto-yliopisto"
},
"url": "http://uri.suomi.fi/codelist/fairdata/organization/code/10076",
"in_scheme": "http://uri.suomi.fi/codelist/fairdata/organization"
}
}
},
{
"id": "07f927f3-7a99-407f-880f-d5f099ee949a",
"roles": [
"publisher"
],
"organization": {
"id": "364bd513-873f-46d7-895a-6138232b2064",
"pref_label": {
"en": "Zenodo",
"fi": "Zenodo",
"sv": "Zenodo"
}
}
}
],
"cumulative_state": 0,
"data_catalog": "urn:nbn:fi:att:data-catalog-acris",
"description": {
"en": "The dataset contains a photorealistic and classified urban point cloud from Kalasatama region in Helsinki, Finland. Data was created using both terrestrial laser scanning (Leica RTC360) and UAV-based (DJI P4 Pro+) photogrammetry. 3D reconstruction was completed with RealityCapture and point cloud classification with TerraScan. The dataset is georeferenced in ETRS-TM35FIN (EPSG 3067) coordinate system. Work was done in Aalto University (The Research Institute of Measuring and Modeling for the Built Environment) with support from the City of Helsinki."
},
"field_of_science": [
{
"id": "33d291b9-9b23-4192-b878-cffc210af1d3",
"url": "http://www.yso.fi/onto/okm-tieteenala/ta113",
"in_scheme": "http://www.yso.fi/onto/okm-tieteenala/conceptscheme",
"pref_label": {
"en": "Computer and information sciences",
"fi": "Tietojenkäsittely ja informaatiotieteet",
"sv": "Data- och informationsvetenskap"
}
}
],
"infrastructure": [],
"issued": "2021-01-01",
"keyword": [],
"language": [],
"metadata_owner": {
"id": "ac3f9596-0e50-4ac1-9c16-1e143e4e60b5",
"organization": "aalto.fi",
"admin_organization": "aalto.fi"
},
"other_identifiers": [],
"persistent_identifier": "10.5281/zenodo.5578198",
"pid_generated_by_fairdata": false,
"projects": [],
"provenance": [],
"relation": [],
"remote_resources": [
{
"title": {
"en": "Data in remote location",
"fi": "Aineisto ulkoisessa palvelussa",
"sv": "Material i en extern tjänst",
"und": "Data in remote location"
},
"use_category": {
"id": "d91e6ce8-6567-441e-96e8-9d706570a677",
"url": "http://uri.suomi.fi/codelist/fairdata/use_category/code/source",
"in_scheme": "http://uri.suomi.fi/codelist/fairdata/use_category",
"pref_label": {
"en": "Source material",
"fi": "Lähdeaineisto"
}
},
"download_url": "https://zenodo.org/record/5578198"
}
],
"spatial": [],
"state": "published",
"temporal": [],
"theme": [],
"title": {
"en": "Photorealistic and classified urban point cloud dataset (Helsinki)"
},
"created": "2025-11-17T11:06:45Z",
"modified": "2025-11-17T11:06:45Z",
"dataset_versions": [
{
"id": "4a2e0a13-cdca-4be3-a4b5-257f37f10e25",
"title": {
"en": "Photorealistic and classified urban point cloud dataset (Helsinki)"
},
"persistent_identifier": "10.5281/zenodo.5578198",
"state": "published",
"created": "2025-11-17T11:06:45Z",
"version": 1
}
],
"published_revision": 1,
"version": 1,
"api_version": 3,
"metadata_repository": "Fairdata"
},
{
"id": "b5c055ca-06c5-4d55-bb01-226b9feb3767",
"access_rights": {
"id": "88f24d61-9241-44ab-84bf-5e6a099d641a",
"license": [
{
"id": "6142d0c6-945d-4085-b9f7-81e52afa253b",
"custom_url": "https://opensource.org/licenses/MIT",
"url": "http://uri.suomi.fi/codelist/fairdata/license/code/other",
"in_scheme": "http://uri.suomi.fi/codelist/fairdata/license",
"pref_label": {
"en": "Other",
"fi": "Muu"
}
}
],
"access_type": {
"id": "d01ac02c-fc70-4c68-9434-8383cb693ff0",
"url": "http://uri.suomi.fi/codelist/fairdata/access_type/code/open",
"in_scheme": "http://uri.suomi.fi/codelist/fairdata/access_type",
"pref_label": {
"en": "Open",
"fi": "Avoin"
}
},
"restriction_grounds": []
},
"actors": [
{
"id": "80e490eb-5958-497d-aeed-10a8a528fbad",
"roles": [
"creator"
],
"person": {
"id": "81be7dee-37f2-4679-8d98-1b0fdaff8ed7",
"name": "Niko Savola"
},
"organization": {
"id": "9e2e5601-7fd3-4370-ab08-259dd1f40996",
"pref_label": {
"en": "Department of Mathematics and Systems Analysis",
"fi": "Department of Mathematics and Systems Analysis",
"sv": "Department of Mathematics and Systems Analysis",
"und": "Department of Mathematics and Systems Analysis"
},
"url": "http://uri.suomi.fi/codelist/fairdata/organization/code/10076-T302",
"in_scheme": "http://uri.suomi.fi/codelist/fairdata/organization",
"parent": {
"id": "7d61af1c-0cc6-46fe-9940-21da2b080cb3",
"pref_label": {
"en": "Aalto University",
"fi": "Aalto-yliopisto",
"sv": "Aalto-universitetet",
"und": "Aalto-yliopisto"
},
"url": "http://uri.suomi.fi/codelist/fairdata/organization/code/10076",
"in_scheme": "http://uri.suomi.fi/codelist/fairdata/organization"
}
}
},
{
"id": "7e4ebee1-fa9d-425a-b2be-0005b8f1de69",
"roles": [
"publisher"
],
"organization": {
"id": "c0df67e7-a0b7-43d3-aa32-21dd10170040",
"pref_label": {
"en": "Zenodo",
"fi": "Zenodo",
"sv": "Zenodo"
}
}
}
],
"cumulative_state": 0,
"data_catalog": "urn:nbn:fi:att:data-catalog-acris",
"description": {
"en": "Predicting Video Game Rating from Genres using Multilayer Perceptron\r\n\r\nSee live demo on GitHub Pages.\r\n\r\nPython notebook for training and a .pdf report are included in the training-folder.\r\n\r\nOriginally a project for the course CS-C3240 - Machine Learning provided by Aalto University.\r\n\r\nImplementation\r\n\r\n\r\n\tPython & Keras training and model\r\n\tReact & TensorFlow.js interactive predictor\r\n\t\r\nThe title and description of this software/code correspond with the situation when the software metadata was imported to ACRIS. The most recent version of metadata is available in the original repository."
},
"field_of_science": [
{
"id": "33d291b9-9b23-4192-b878-cffc210af1d3",
"url": "http://www.yso.fi/onto/okm-tieteenala/ta113",
"in_scheme": "http://www.yso.fi/onto/okm-tieteenala/conceptscheme",
"pref_label": {
"en": "Computer and information sciences",
"fi": "Tietojenkäsittely ja informaatiotieteet",
"sv": "Data- och informationsvetenskap"
}
}
],
"infrastructure": [],
"issued": "2021-01-01",
"keyword": [],
"language": [],
"metadata_owner": {
"id": "ac3f9596-0e50-4ac1-9c16-1e143e4e60b5",
"organization": "aalto.fi",
"admin_organization": "aalto.fi"
},
"other_identifiers": [],
"persistent_identifier": "10.5281/zenodo.4849546",
"pid_generated_by_fairdata": false,
"projects": [],
"provenance": [],
"relation": [],
"remote_resources": [
{
"title": {
"en": "Data in remote location",
"fi": "Aineisto ulkoisessa palvelussa",
"sv": "Material i en extern tjänst",
"und": "Data in remote location"
},
"use_category": {
"id": "d91e6ce8-6567-441e-96e8-9d706570a677",
"url": "http://uri.suomi.fi/codelist/fairdata/use_category/code/source",
"in_scheme": "http://uri.suomi.fi/codelist/fairdata/use_category",
"pref_label": {
"en": "Source material",
"fi": "Lähdeaineisto"
}
},
"download_url": "https://zenodo.org/record/4849546"
}
],
"spatial": [],
"state": "published",
"temporal": [],
"theme": [],
"title": {
"en": "nikosavola/video-game-rating-ml: v1.0.0"
},
"created": "2025-11-17T11:06:42Z",
"modified": "2025-11-17T11:06:42Z",
"dataset_versions": [
{
"id": "b5c055ca-06c5-4d55-bb01-226b9feb3767",
"title": {
"en": "nikosavola/video-game-rating-ml: v1.0.0"
},
"persistent_identifier": "10.5281/zenodo.4849546",
"state": "published",
"created": "2025-11-17T11:06:42Z",
"version": 1
}
],
"published_revision": 1,
"version": 1,
"api_version": 3,
"metadata_repository": "Fairdata"
},
{
"id": "5168be2b-2b24-4d1d-adbe-1f0ca2f53396",
"access_rights": {
"id": "d13bd8f7-2ef7-493b-813e-6e1a0658fec9",
"license": [
{
"id": "6142d0c6-945d-4085-b9f7-81e52afa253b",
"url": "http://uri.suomi.fi/codelist/fairdata/license/code/other",
"in_scheme": "http://uri.suomi.fi/codelist/fairdata/license",
"pref_label": {
"en": "Other",
"fi": "Muu"
}
}
],
"access_type": {
"id": "d01ac02c-fc70-4c68-9434-8383cb693ff0",
"url": "http://uri.suomi.fi/codelist/fairdata/access_type/code/open",
"in_scheme": "http://uri.suomi.fi/codelist/fairdata/access_type",
"pref_label": {
"en": "Open",
"fi": "Avoin"
}
},
"restriction_grounds": []
},
"actors": [
{
"id": "92515aa9-f5f6-4a5c-b4cd-ef256e4027cb",
"roles": [
"contributor"
],
"person": {
"id": "85555e09-2aa5-4ebe-b18b-35ac94ef9898",
"name": "Topi Kuutela",
"external_identifier": "https://orcid.org/"
},
"organization": {
"id": "9e2e5601-7fd3-4370-ab08-259dd1f40996",
"pref_label": {
"en": "Department of Mathematics and Systems Analysis",
"fi": "Department of Mathematics and Systems Analysis",
"sv": "Department of Mathematics and Systems Analysis",
"und": "Department of Mathematics and Systems Analysis"
},
"url": "http://uri.suomi.fi/codelist/fairdata/organization/code/10076-T302",
"in_scheme": "http://uri.suomi.fi/codelist/fairdata/organization",
"parent": {
"id": "7d61af1c-0cc6-46fe-9940-21da2b080cb3",
"pref_label": {
"en": "Aalto University",
"fi": "Aalto-yliopisto",
"sv": "Aalto-universitetet",
"und": "Aalto-yliopisto"
},
"url": "http://uri.suomi.fi/codelist/fairdata/organization/code/10076",
"in_scheme": "http://uri.suomi.fi/codelist/fairdata/organization"
}
}
},
{
"id": "fb1a1570-f9e4-4c9f-ba43-8a1acb373563",
"roles": [
"creator"
],
"person": {
"id": "a518cddf-2dd4-49f0-879a-9e163acfdfc5",
"name": "Aku Seppänen"
},
"organization": {
"id": "86b8ba76-e55c-41fd-be6b-ef7ebede6692",
"pref_label": {
"en": "University of Eastern Finland",
"fi": "University of Eastern Finland",
"sv": "University of Eastern Finland"
}
}
},
{
"id": "79c8cb50-bbf6-4928-b996-28f633b909fb",
"roles": [
"creator"
],
"person": {
"id": "56d80754-a54d-48c0-9dd6-98da77173291",
"name": "Antti Nissinen"
},
"organization": {
"id": "d2562357-597a-4b31-9412-3c46528d84be",
"pref_label": {
"en": "Aalto University",
"fi": "Aalto University",
"sv": "Aalto University"
}
}
},
{
"id": "00d1dee5-8c50-4ec3-a955-eef13b90f29b",
"roles": [
"creator"
],
"person": {
"id": "aa8f2c85-37ec-4acf-928e-602442f397f4",
"name": "Stratos Staboulis",
"external_identifier": "https://orcid.org/"
},
"organization": {
"id": "9e2e5601-7fd3-4370-ab08-259dd1f40996",
"pref_label": {
"en": "Department of Mathematics and Systems Analysis",
"fi": "Department of Mathematics and Systems Analysis",
"sv": "Department of Mathematics and Systems Analysis",
"und": "Department of Mathematics and Systems Analysis"
},
"url": "http://uri.suomi.fi/codelist/fairdata/organization/code/10076-T302",
"in_scheme": "http://uri.suomi.fi/codelist/fairdata/organization",
"parent": {
"id": "7d61af1c-0cc6-46fe-9940-21da2b080cb3",
"pref_label": {
"en": "Aalto University",
"fi": "Aalto-yliopisto",
"sv": "Aalto-universitetet",
"und": "Aalto-yliopisto"
},
"url": "http://uri.suomi.fi/codelist/fairdata/organization/code/10076",
"in_scheme": "http://uri.suomi.fi/codelist/fairdata/organization"
}
}
},
{
"id": "c20062ee-4a73-4917-a031-e03f54264f51",
"roles": [
"creator"
],
"person": {
"id": "4da9d0b0-9540-42c6-8d8b-b75c29532d91",
"name": "Nuutti Hyvönen",
"external_identifier": "https://orcid.org/0000-0001-6715-8337"
},
"organization": {
"id": "9e2e5601-7fd3-4370-ab08-259dd1f40996",
"pref_label": {
"en": "Department of Mathematics and Systems Analysis",
"fi": "Department of Mathematics and Systems Analysis",
"sv": "Department of Mathematics and Systems Analysis",
"und": "Department of Mathematics and Systems Analysis"
},
"url": "http://uri.suomi.fi/codelist/fairdata/organization/code/10076-T302",
"in_scheme": "http://uri.suomi.fi/codelist/fairdata/organization",
"parent": {
"id": "7d61af1c-0cc6-46fe-9940-21da2b080cb3",
"pref_label": {
"en": "Aalto University",
"fi": "Aalto-yliopisto",
"sv": "Aalto-universitetet",
"und": "Aalto-yliopisto"
},
"url": "http://uri.suomi.fi/codelist/fairdata/organization/code/10076",
"in_scheme": "http://uri.suomi.fi/codelist/fairdata/organization"
}
}
},
{
"id": "1d38c0bd-0848-48d7-a623-27cd71983933",
"roles": [
"publisher"
],
"organization": {
"id": "fc1627dc-f310-49e7-9180-a053b23ece13",
"pref_label": {
"en": "Zenodo",
"fi": "Zenodo",
"sv": "Zenodo"
}
}
}
],
"cumulative_state": 0,
"data_catalog": "urn:nbn:fi:att:data-catalog-acris",
"description": {
"en": "This is a collection of Electrical Impedance Tomography measurements of a thorax cross-section shaped tank with 16 electrodes. These are published primarily for reproducibility and therefore the documentation is incomplete.\r\n\r\nCREDITS:\r\nThe measurements were carried out in 2009 by Aku Seppänen (University of Eastern Finland), Antti Nissinen (Aalto University), Stratos Staboulis (Aalto University) and Nuutti Hyvönen (Aalto University). If you have questions about the data, please contact Nuutti Hyvönen (firstname.lastname@aalto.fi).\r\n \r\n\r\nFor information about the measurement device, please refer to:\r\nKourunen, J., Savolainen, T., Lehikoinen, A., Vauhkonen, M., and Heikkinen, L. M. - Suitability of a PXI platform for an electrical impedance tomography system. Meas. Sci. Technol. 20 (2009), 015503. DOI: 10.1088/0957-0233/20/1/015503\r\n\r\nFor a general overview of the measurement setup, please refer to section 4.3 on:\r\nHyvönen, N., and Mustonen, L. - Smoothened electrode model. SIAM J. Appl. Math. 77 (2017), 2250–2271. DOI 10.1137/17M1124292"
},
"field_of_science": [
{
"id": "33d291b9-9b23-4192-b878-cffc210af1d3",
"url": "http://www.yso.fi/onto/okm-tieteenala/ta113",
"in_scheme": "http://www.yso.fi/onto/okm-tieteenala/conceptscheme",
"pref_label": {
"en": "Computer and information sciences",
"fi": "Tietojenkäsittely ja informaatiotieteet",
"sv": "Data- och informationsvetenskap"
}
}
],
"infrastructure": [],
"issued": "2021-01-01",
"keyword": [],
"language": [],
"metadata_owner": {
"id": "ac3f9596-0e50-4ac1-9c16-1e143e4e60b5",
"organization": "aalto.fi",
"admin_organization": "aalto.fi"
},
"other_identifiers": [],
"persistent_identifier": "10.5281/zenodo.4471804",
"pid_generated_by_fairdata": false,
"projects": [],
"provenance": [],
"relation": [],
"remote_resources": [
{
"title": {
"en": "Data in remote location",
"fi": "Aineisto ulkoisessa palvelussa",
"sv": "Material i en extern tjänst",
"und": "Data in remote location"
},
"use_category": {
"id": "d91e6ce8-6567-441e-96e8-9d706570a677",
"url": "http://uri.suomi.fi/codelist/fairdata/use_category/code/source",
"in_scheme": "http://uri.suomi.fi/codelist/fairdata/use_category",
"pref_label": {
"en": "Source material",
"fi": "Lähdeaineisto"
}
},
"download_url": "https://zenodo.org/record/4471805"
}
],
"spatial": [],
"state": "published",
"temporal": [],
"theme": [],
"title": {
"en": "Electrical impedance dataset of a thorax shaped tank"
},
"created": "2025-11-17T11:06:39Z",
"modified": "2025-11-17T11:06:39Z",
"dataset_versions": [
{
"id": "5168be2b-2b24-4d1d-adbe-1f0ca2f53396",
"title": {
"en": "Electrical impedance dataset of a thorax shaped tank"
},
"persistent_identifier": "10.5281/zenodo.4471804",
"state": "published",
"created": "2025-11-17T11:06:39Z",
"version": 1
}
],
"published_revision": 1,
"version": 1,
"api_version": 3,
"metadata_repository": "Fairdata"
},
{
"id": "b845eed4-195e-4d70-a374-d8698adc6790",
"access_rights": {
"id": "6cd81584-5506-4455-91e7-e8bb4d04b27d",
"license": [
{
"id": "35b18e72-3819-4ec6-a1be-14624f29d968",
"url": "http://uri.suomi.fi/codelist/fairdata/license/code/CC-BY-4.0",
"in_scheme": "http://uri.suomi.fi/codelist/fairdata/license",
"pref_label": {
"en": "Creative Commons Attribution 4.0 International (CC BY 4.0)",
"fi": "Creative Commons Nimeä 4.0 Kansainvälinen (CC BY 4.0)"
}
}
],
"access_type": {
"id": "d01ac02c-fc70-4c68-9434-8383cb693ff0",
"url": "http://uri.suomi.fi/codelist/fairdata/access_type/code/open",
"in_scheme": "http://uri.suomi.fi/codelist/fairdata/access_type",
"pref_label": {
"en": "Open",
"fi": "Avoin"
}
},
"restriction_grounds": []
},
"actors": [
{
"id": "50b6495d-eb59-48d4-ad6a-68c3ae26c8be",
"roles": [
"creator"
],
"person": {
"id": "845e45f6-875b-4d9f-9ef8-e7f1e378a1e9",
"name": "Marko Korhonen",
"external_identifier": "https://orcid.org/0000-0001-8471-5692"
},
"organization": {
"id": "ede66a40-3153-4fbe-921c-6b0fe81e5f01",
"pref_label": {
"en": "Department of Energy and Mechanical Engineering",
"fi": "Department of Energy and Mechanical Engineering",
"sv": "Department of Energy and Mechanical Engineering",
"und": "Department of Energy and Mechanical Engineering"
},
"url": "http://uri.suomi.fi/codelist/fairdata/organization/code/10076-T212",
"in_scheme": "http://uri.suomi.fi/codelist/fairdata/organization",
"parent": {
"id": "7d61af1c-0cc6-46fe-9940-21da2b080cb3",
"pref_label": {
"en": "Aalto University",
"fi": "Aalto-yliopisto",
"sv": "Aalto-universitetet",
"und": "Aalto-yliopisto"
},
"url": "http://uri.suomi.fi/codelist/fairdata/organization/code/10076",
"in_scheme": "http://uri.suomi.fi/codelist/fairdata/organization"
}
}
},
{
"id": "08238b1c-2fbd-4519-8bab-42c0f5684640",
"roles": [
"creator"
],
"person": {
"id": "35fb6f6b-e539-4c4a-88b6-b06fd42da63d",
"name": "Ville Vuorinen",
"external_identifier": "https://orcid.org/0000-0001-6856-2200"
},
"organization": {
"id": "ede66a40-3153-4fbe-921c-6b0fe81e5f01",
"pref_label": {
"en": "Department of Energy and Mechanical Engineering",
"fi": "Department of Energy and Mechanical Engineering",
"sv": "Department of Energy and Mechanical Engineering",
"und": "Department of Energy and Mechanical Engineering"
},
"url": "http://uri.suomi.fi/codelist/fairdata/organization/code/10076-T212",
"in_scheme": "http://uri.suomi.fi/codelist/fairdata/organization",
"parent": {
"id": "7d61af1c-0cc6-46fe-9940-21da2b080cb3",
"pref_label": {
"en": "Aalto University",
"fi": "Aalto-yliopisto",
"sv": "Aalto-universitetet",
"und": "Aalto-yliopisto"
},
"url": "http://uri.suomi.fi/codelist/fairdata/organization/code/10076",
"in_scheme": "http://uri.suomi.fi/codelist/fairdata/organization"
}
}
},
{
"id": "20bd4de5-6bf5-40a8-adf1-c66cea0f2611",
"roles": [
"creator"
],
"person": {
"id": "adc4de9c-3fc6-40a5-b36c-00e0ac4a2745",
"name": "Antti Puisto",
"external_identifier": "https://orcid.org/0000-0002-2087-3330"
},
"organization": {
"id": "bc4c943c-ddaa-4195-aaaa-6d97aa34d359",
"pref_label": {
"en": "Department of Applied Physics",
"fi": "Department of Applied Physics",
"sv": "Department of Applied Physics",
"und": "Department of Applied Physics"
},
"url": "http://uri.suomi.fi/codelist/fairdata/organization/code/10076-T304",
"in_scheme": "http://uri.suomi.fi/codelist/fairdata/organization",
"parent": {
"id": "7d61af1c-0cc6-46fe-9940-21da2b080cb3",
"pref_label": {
"en": "Aalto University",
"fi": "Aalto-yliopisto",
"sv": "Aalto-universitetet",
"und": "Aalto-yliopisto"
},
"url": "http://uri.suomi.fi/codelist/fairdata/organization/code/10076",
"in_scheme": "http://uri.suomi.fi/codelist/fairdata/organization"
}
}
},
{
"id": "da1b5581-fec6-4629-b5e4-b94d834499f6",
"roles": [
"creator"
],
"person": {
"id": "a53c51d6-e18c-406a-adfc-262ce0ab0fd9",
"name": "Henri Salmenjoki",
"external_identifier": "https://orcid.org/"
},
"organization": {
"id": "bc4c943c-ddaa-4195-aaaa-6d97aa34d359",
"pref_label": {
"en": "Department of Applied Physics",
"fi": "Department of Applied Physics",
"sv": "Department of Applied Physics",
"und": "Department of Applied Physics"
},
"url": "http://uri.suomi.fi/codelist/fairdata/organization/code/10076-T304",
"in_scheme": "http://uri.suomi.fi/codelist/fairdata/organization",
"parent": {
"id": "7d61af1c-0cc6-46fe-9940-21da2b080cb3",
"pref_label": {
"en": "Aalto University",
"fi": "Aalto-yliopisto",
"sv": "Aalto-universitetet",
"und": "Aalto-yliopisto"
},
"url": "http://uri.suomi.fi/codelist/fairdata/organization/code/10076",
"in_scheme": "http://uri.suomi.fi/codelist/fairdata/organization"
}
}
},
{
"id": "569fa9ee-38a9-4d7a-8873-de1a31966d97",
"roles": [
"creator"
],
"person": {
"id": "202b5b5d-100a-4470-b60d-afbbd1859c1a",
"name": "Mikko J. Alava",
"external_identifier": "https://orcid.org/0000-0001-9249-5079"
},
"organization": {
"id": "bc4c943c-ddaa-4195-aaaa-6d97aa34d359",
"pref_label": {
"en": "Department of Applied Physics",
"fi": "Department of Applied Physics",
"sv": "Department of Applied Physics",
"und": "Department of Applied Physics"
},
"url": "http://uri.suomi.fi/codelist/fairdata/organization/code/10076-T304",
"in_scheme": "http://uri.suomi.fi/codelist/fairdata/organization",
"parent": {
"id": "7d61af1c-0cc6-46fe-9940-21da2b080cb3",
"pref_label": {
"en": "Aalto University",
"fi": "Aalto-yliopisto",
"sv": "Aalto-universitetet",
"und": "Aalto-yliopisto"
},
"url": "http://uri.suomi.fi/codelist/fairdata/organization/code/10076",
"in_scheme": "http://uri.suomi.fi/codelist/fairdata/organization"
}
}
},
{
"id": "1d78174d-185f-472d-b9b1-33083b9806cd",
"roles": [
"publisher"
],
"organization": {
"id": "4e31a832-24f3-4a3e-bca9-6eb76ebdb298",
"pref_label": {
"en": "Zenodo",
"fi": "Zenodo",
"sv": "Zenodo"
}
}
}
],
"cumulative_state": 0,
"data_catalog": "urn:nbn:fi:att:data-catalog-acris",
"description": {
"en": "Data from new Monte-Carlo simulations of aerosol-based exposure to SARS-CoV-2 in shop and bar environments. For background and previous results see V. Vuorinen et al. Safety Science 130 (2020): 104866.\r\n\r\nThe files are collected to a tar file that includes all data files used for analysis (binary files with NumPy data type .npy) and a readme."
},
"field_of_science": [
{
"id": "7e12a692-26de-4e3c-b28c-64f8a32ef40a",
"url": "http://www.yso.fi/onto/okm-tieteenala/ta114",
"in_scheme": "http://www.yso.fi/onto/okm-tieteenala/conceptscheme",
"pref_label": {
"en": "Physical sciences",
"fi": "Fysiikka",
"sv": "Fysik"
}
},
{
"id": "5d9b49d9-f2d2-4841-8f5c-ef72f2017c9e",
"url": "http://www.yso.fi/onto/okm-tieteenala/ta222",
"in_scheme": "http://www.yso.fi/onto/okm-tieteenala/conceptscheme",
"pref_label": {
"en": "Other engineering and technologies",
"fi": "Muu tekniikka",
"sv": "Övrig teknik och teknologi"
}
}
],
"infrastructure": [],
"issued": "2021-01-01",
"keyword": [],
"language": [],
"metadata_owner": {
"id": "ac3f9596-0e50-4ac1-9c16-1e143e4e60b5",
"organization": "aalto.fi",
"admin_organization": "aalto.fi"
},
"other_identifiers": [],
"persistent_identifier": "10.5281/zenodo.5040829",
"pid_generated_by_fairdata": false,
"projects": [],
"provenance": [],
"relation": [],
"remote_resources": [
{
"title": {
"en": "Data in remote location",
"fi": "Aineisto ulkoisessa palvelussa",
"sv": "Material i en extern tjänst",
"und": "Data in remote location"
},
"use_category": {
"id": "d91e6ce8-6567-441e-96e8-9d706570a677",
"url": "http://uri.suomi.fi/codelist/fairdata/use_category/code/source",
"in_scheme": "http://uri.suomi.fi/codelist/fairdata/use_category",
"pref_label": {
"en": "Source material",
"fi": "Lähdeaineisto"
}
},
"download_url": "https://zenodo.org/record/5040829"
}
],
"spatial": [],
"state": "published",
"temporal": [],
"theme": [],
"title": {
"en": "Monte-Carlo simulations of aerosol-based exposure to SARS-CoV-2 in a shop/bar"
},
"created": "2025-11-17T11:06:35Z",
"modified": "2025-11-17T11:06:35Z",
"dataset_versions": [
{
"id": "b845eed4-195e-4d70-a374-d8698adc6790",
"title": {
"en": "Monte-Carlo simulations of aerosol-based exposure to SARS-CoV-2 in a shop/bar"
},
"persistent_identifier": "10.5281/zenodo.5040829",
"state": "published",
"created": "2025-11-17T11:06:35Z",
"version": 1
}
],
"published_revision": 1,
"version": 1,
"api_version": 3,
"metadata_repository": "Fairdata"
},
{
"id": "c3e0e9bb-e9f3-4ab0-9e41-e1820af0e7d2",
"access_rights": {
"id": "91b32766-f4e2-46dd-aea9-b53b2a51028f",
"license": [
{
"id": "9f8e151c-af07-44f6-8104-a30b68fc2b3c",
"url": "http://uri.suomi.fi/codelist/fairdata/license/code/CC0-1.0",
"in_scheme": "http://uri.suomi.fi/codelist/fairdata/license",
"pref_label": {
"en": "Creative Commons CC0 1.0 Universal (CC0 1.0) Public Domain Dedication",
"fi": "Creative Commons Yleismaailmallinen (CC0 1.0) Public Domain -lausuma"
}
}
],
"access_type": {
"id": "d01ac02c-fc70-4c68-9434-8383cb693ff0",
"url": "http://uri.suomi.fi/codelist/fairdata/access_type/code/open",
"in_scheme": "http://uri.suomi.fi/codelist/fairdata/access_type",
"pref_label": {
"en": "Open",
"fi": "Avoin"
}
},
"restriction_grounds": []
},
"actors": [
{
"id": "7996161b-4567-4cb2-9dd0-1a5e0f1ab2ed",
"roles": [
"creator"
],
"person": {
"id": "a1b4eef3-e03f-40d7-91b5-9d0609584edc",
"name": "Pınar Barlas"
},
"organization": {
"id": "aabcc7bb-e8a8-4afc-b277-907f2ca13b03",
"pref_label": {
"en": "CYENS Centre of Excellence"
}
}
},
{
"id": "9b6e0376-60ea-47ff-aae2-1bd993807fba",
"roles": [
"creator"
],
"person": {
"id": "cf02bc3a-21c3-4fa2-909a-4723a3b6ade7",
"name": "Maximilian Krahn"
},
"organization": {
"id": "c7963c8c-37b7-4962-84a4-4fe651b4ccb7",
"pref_label": {
"en": "Department of Computer Science",
"fi": "Department of Computer Science",
"sv": "Department of Computer Science",
"und": "Department of Computer Science"
},
"url": "http://uri.suomi.fi/codelist/fairdata/organization/code/10076-T313",
"in_scheme": "http://uri.suomi.fi/codelist/fairdata/organization",
"parent": {
"id": "7d61af1c-0cc6-46fe-9940-21da2b080cb3",
"pref_label": {
"en": "Aalto University",
"fi": "Aalto-yliopisto",
"sv": "Aalto-universitetet",
"und": "Aalto-yliopisto"
},
"url": "http://uri.suomi.fi/codelist/fairdata/organization/code/10076",
"in_scheme": "http://uri.suomi.fi/codelist/fairdata/organization"
}
}
},
{
"id": "cf3fee3a-8beb-440e-9bf8-c166a999c95c",
"roles": [
"creator"
],
"person": {
"id": "7b8bdb1c-d6be-44ce-991b-03ad593aff21",
"name": "Styliani Kleanthous"
},
"organization": {
"id": "aabcc7bb-e8a8-4afc-b277-907f2ca13b03",
"pref_label": {
"en": "CYENS Centre of Excellence"
}
}
},
{
"id": "cd242ef8-44c1-4872-bab4-ad70440234cd",
"roles": [
"creator"
],
"person": {
"id": "d1e9c21e-90e5-4930-b251-1402c1d6d342",
"name": "Kyriakos Kyriakou"
},
"organization": {
"id": "aabcc7bb-e8a8-4afc-b277-907f2ca13b03",
"pref_label": {
"en": "CYENS Centre of Excellence"
}
}
},
{
"id": "d4a395a5-9f6a-4fe9-b3d3-0d8a9e760a73",
"roles": [
"creator"
],
"person": {
"id": "b05c5b2c-cd1c-4dd3-9213-2e926f7eac54",
"name": "Jahna Otterbacher"
},
"organization": {
"id": "aabcc7bb-e8a8-4afc-b277-907f2ca13b03",
"pref_label": {
"en": "CYENS Centre of Excellence"
}
}
},
{
"id": "7d94473d-9f8a-4fdb-90af-aa8f8d2bacfa",
"roles": [
"publisher"
],
"organization": {
"id": "be261960-599c-4893-a6fa-1b2e853edae3",
"pref_label": {
"en": "Harvard Dataverse",
"fi": "Harvard Dataverse",
"sv": "Harvard Dataverse"
}
}
}
],
"cumulative_state": 0,
"data_catalog": "urn:nbn:fi:att:data-catalog-acris",
"description": {
"en": "Many eyes have scrutinized the social behaviors of computer vision services, given their popularity with researchers and developers. When analyzing images depicting people, their descriptions often reflect social inequalities and stereotypes, yet the proprietary nature of these services mean that it is difficult to anticipate or explain their behaviors. Mechanisms providing oversight of these processes can enable more responsible use, allowing stakeholders to audit their behaviors and track potential changes over time. Previously, in 2019, we audited image tagging algorithms for social bias when processing images of people. In this work, we i) present data from an audit of the same services three years later, with ii) additional outputs for input images depicting other racial/ethnic groups and iii) a toolkit enabling several fully-automated analyses on the algorithms' behaviors across time."
},
"field_of_science": [
{
"id": "33d291b9-9b23-4192-b878-cffc210af1d3",
"url": "http://www.yso.fi/onto/okm-tieteenala/ta113",
"in_scheme": "http://www.yso.fi/onto/okm-tieteenala/conceptscheme",
"pref_label": {
"en": "Computer and information sciences",
"fi": "Tietojenkäsittely ja informaatiotieteet",
"sv": "Data- och informationsvetenskap"
}
}
],
"infrastructure": [],
"issued": "2022-01-01",
"keyword": [],
"language": [],
"metadata_owner": {
"id": "ac3f9596-0e50-4ac1-9c16-1e143e4e60b5",
"organization": "aalto.fi",
"admin_organization": "aalto.fi"
},
"other_identifiers": [],
"persistent_identifier": "10.7910/dvn/cfhzs3",
"pid_generated_by_fairdata": false,
"projects": [],
"provenance": [],
"relation": [],
"remote_resources": [
{
"title": {
"en": "Data in remote location",
"fi": "Aineisto ulkoisessa palvelussa",
"sv": "Material i en extern tjänst",
"und": "Data in remote location"
},
"use_category": {
"id": "d91e6ce8-6567-441e-96e8-9d706570a677",
"url": "http://uri.suomi.fi/codelist/fairdata/use_category/code/source",
"in_scheme": "http://uri.suomi.fi/codelist/fairdata/use_category",
"pref_label": {
"en": "Source material",
"fi": "Lähdeaineisto"
}
},
"download_url": "https://dataverse.harvard.edu/citation?persistentId=doi:10.7910/DVN/CFHZS3"
}
],
"spatial": [],
"state": "published",
"temporal": [],
"theme": [],
"title": {
"en": "Social B(eye)as over Time (SBT) Dataset"
},
"created": "2025-11-17T11:06:32Z",
"modified": "2025-11-17T11:06:32Z",
"dataset_versions": [
{
"id": "c3e0e9bb-e9f3-4ab0-9e41-e1820af0e7d2",
"title": {
"en": "Social B(eye)as over Time (SBT) Dataset"
},
"persistent_identifier": "10.7910/dvn/cfhzs3",
"state": "published",
"created": "2025-11-17T11:06:32Z",
"version": 1
}
],
"published_revision": 1,
"version": 1,
"api_version": 3,
"metadata_repository": "Fairdata"
},
{
"id": "f1a4f4a5-33b4-4691-aa30-5491c22d068e",
"access_rights": {
"id": "2f51c1a4-cf27-431c-876d-99519989565c",
"license": [
{
"id": "35b18e72-3819-4ec6-a1be-14624f29d968",
"url": "http://uri.suomi.fi/codelist/fairdata/license/code/CC-BY-4.0",
"in_scheme": "http://uri.suomi.fi/codelist/fairdata/license",
"pref_label": {
"en": "Creative Commons Attribution 4.0 International (CC BY 4.0)",
"fi": "Creative Commons Nimeä 4.0 Kansainvälinen (CC BY 4.0)"
}
}
],
"access_type": {
"id": "d01ac02c-fc70-4c68-9434-8383cb693ff0",
"url": "http://uri.suomi.fi/codelist/fairdata/access_type/code/open",
"in_scheme": "http://uri.suomi.fi/codelist/fairdata/access_type",
"pref_label": {
"en": "Open",
"fi": "Avoin"
}
},
"restriction_grounds": []
},
"actors": [
{
"id": "c5c1d89a-0e34-43ca-9955-437396c59b8c",
"roles": [
"creator"
],
"person": {
"id": "fb092b1b-a9a9-4687-b7ec-d7dcdaf685e4",
"name": "Anni A. Antikainen",
"external_identifier": "https://orcid.org/"
},
"organization": {
"id": "c7963c8c-37b7-4962-84a4-4fe651b4ccb7",
"pref_label": {
"en": "Department of Computer Science",
"fi": "Department of Computer Science",
"sv": "Department of Computer Science",
"und": "Department of Computer Science"
},
"url": "http://uri.suomi.fi/codelist/fairdata/organization/code/10076-T313",
"in_scheme": "http://uri.suomi.fi/codelist/fairdata/organization",
"parent": {
"id": "7d61af1c-0cc6-46fe-9940-21da2b080cb3",
"pref_label": {
"en": "Aalto University",
"fi": "Aalto-yliopisto",
"sv": "Aalto-universitetet",
"und": "Aalto-yliopisto"
},
"url": "http://uri.suomi.fi/codelist/fairdata/organization/code/10076",
"in_scheme": "http://uri.suomi.fi/codelist/fairdata/organization"
}
}
},
{
"id": "54c35ac0-5ac8-4042-b713-66fd4645bc21",
"roles": [
"creator"
],
"person": {
"id": "d4adda31-701f-4890-b2b6-de22ed1389ff",
"name": "Markus Heinonen",
"external_identifier": "https://orcid.org/0000-0002-7741-2279"
},
"organization": {
"id": "c7963c8c-37b7-4962-84a4-4fe651b4ccb7",
"pref_label": {
"en": "Department of Computer Science",
"fi": "Department of Computer Science",
"sv": "Department of Computer Science",
"und": "Department of Computer Science"
},
"url": "http://uri.suomi.fi/codelist/fairdata/organization/code/10076-T313",
"in_scheme": "http://uri.suomi.fi/codelist/fairdata/organization",
"parent": {
"id": "7d61af1c-0cc6-46fe-9940-21da2b080cb3",
"pref_label": {
"en": "Aalto University",
"fi": "Aalto-yliopisto",
"sv": "Aalto-universitetet",
"und": "Aalto-yliopisto"
},
"url": "http://uri.suomi.fi/codelist/fairdata/organization/code/10076",
"in_scheme": "http://uri.suomi.fi/codelist/fairdata/organization"
}
}
},
{
"id": "14ab1d8b-e1ba-4e3e-83fb-59c9dd7d3139",
"roles": [
"creator"
],
"person": {
"id": "d91ad74e-4ba8-450c-a502-82bc296ee135",
"name": "Harri Lähdesmäki",
"external_identifier": "https://orcid.org/"
},
"organization": {
"id": "c7963c8c-37b7-4962-84a4-4fe651b4ccb7",
"pref_label": {
"en": "Department of Computer Science",
"fi": "Department of Computer Science",
"sv": "Department of Computer Science",
"und": "Department of Computer Science"
},
"url": "http://uri.suomi.fi/codelist/fairdata/organization/code/10076-T313",
"in_scheme": "http://uri.suomi.fi/codelist/fairdata/organization",
"parent": {
"id": "7d61af1c-0cc6-46fe-9940-21da2b080cb3",
"pref_label": {
"en": "Aalto University",
"fi": "Aalto-yliopisto",
"sv": "Aalto-universitetet",
"und": "Aalto-yliopisto"
},
"url": "http://uri.suomi.fi/codelist/fairdata/organization/code/10076",
"in_scheme": "http://uri.suomi.fi/codelist/fairdata/organization"
}
}
},
{
"id": "02a7ae57-58a8-4e5f-b444-43c2f9a3ecf4",
"roles": [
"publisher"
],
"organization": {
"id": "7a6b97ac-aa19-4b66-921a-0d8947f1bc74",
"pref_label": {
"en": "figshare",
"fi": "figshare",
"sv": "figshare"
}
}
}
],
"cumulative_state": 0,
"data_catalog": "urn:nbn:fi:att:data-catalog-acris",
"description": {
"en": "Abstract Background Transcription factors (TFs) bind regulatory DNA regions with sequence specificity, form complexes and regulate gene expression. In cooperative TF-TF binding, two transcription factors bind onto a shared DNA binding site as a pair. Previous work has demonstrated pairwise TF-TF-DNA interactions with position weight matrices (PWMs), which may however not sufficiently take into account the complexity and flexibility of pairwise binding. Results We propose two random forest (RF) methods for joint TF-TF binding site prediction: ComBind and JointRF. We train models with previously published large-scale CAP-SELEX DNA libraries, which comprise DNA sequences enriched for binding of a selected TF pair. JointRF builds a random forest with sub-sequences selected from CAP-SELEX DNA reads with previously proposed pairwise PWM. JointRF outperforms (area under receiver operating characteristics curve, AUROC, 0.75) the current state-of-the-art method i.e. orientation and spacing specific pairwise PWMs (AUROC 0.59). Thus, JointRF may be utilized to improve prediction accuracy for pre-determined binding preferences. However, pairwise TF binding is currently considered flexible; a pair may bind DNA with different orientations and amounts of dinucleotide gaps or overlap between the two motifs. Thus, we developed ComBind, which utilizes random forests by considering simultaneously multiple orientations and spacings of the two factors. Our approach outperforms (AUROC 0.78) PWMs, as well as JointRF (p<0.00195). ComBind provides an approach for predicting TF-TF binding sites without prior knowledge on pairwise binding preferences. However, more research is needed to assess ComBind eligibility for practical applications. Conclusions Random forest is well suited for modeling pairwise TF-TF-DNA binding specificities, and ComBind provides an improvement to pairwise binding site prediction accuracy."
},
"field_of_science": [
{
"id": "33d291b9-9b23-4192-b878-cffc210af1d3",
"url": "http://www.yso.fi/onto/okm-tieteenala/ta113",
"in_scheme": "http://www.yso.fi/onto/okm-tieteenala/conceptscheme",
"pref_label": {
"en": "Computer and information sciences",
"fi": "Tietojenkäsittely ja informaatiotieteet",
"sv": "Data- och informationsvetenskap"
}
}
],
"infrastructure": [],
"issued": "2022-01-01",
"keyword": [],
"language": [],
"metadata_owner": {
"id": "ac3f9596-0e50-4ac1-9c16-1e143e4e60b5",
"organization": "aalto.fi",
"admin_organization": "aalto.fi"
},
"other_identifiers": [],
"persistent_identifier": "10.6084/m9.figshare.c.6031779.v1",
"pid_generated_by_fairdata": false,
"projects": [],
"provenance": [],
"relation": [],
"remote_resources": [
{
"title": {
"en": "Data in remote location",
"fi": "Aineisto ulkoisessa palvelussa",
"sv": "Material i en extern tjänst",
"und": "Data in remote location"
},
"use_category": {
"id": "d91e6ce8-6567-441e-96e8-9d706570a677",
"url": "http://uri.suomi.fi/codelist/fairdata/use_category/code/source",
"in_scheme": "http://uri.suomi.fi/codelist/fairdata/use_category",
"pref_label": {
"en": "Source material",
"fi": "Lähdeaineisto"
}
},
"download_url": "https://springernature.figshare.com/collections/Modeling_binding_specificities_of_transcription_factor_pairs_with_random_forests/6031779/1"
}
],
"spatial": [],
"state": "published",
"temporal": [],
"theme": [],
"title": {
"en": "Modeling binding specificities of transcription factor pairs with random forests"
},
"created": "2025-11-17T11:06:28Z",
"modified": "2025-11-17T11:06:28Z",
"dataset_versions": [
{
"id": "f1a4f4a5-33b4-4691-aa30-5491c22d068e",
"title": {
"en": "Modeling binding specificities of transcription factor pairs with random forests"
},
"persistent_identifier": "10.6084/m9.figshare.c.6031779.v1",
"state": "published",
"created": "2025-11-17T11:06:28Z",
"version": 1
}
],
"published_revision": 1,
"version": 1,
"api_version": 3,
"metadata_repository": "Fairdata"
},
{
"id": "7653f772-2461-4697-8538-82cb34d9b0cf",
"access_rights": {
"id": "72b5993d-5e32-40b1-ab48-3abdfa2f0efe",
"license": [
{
"id": "6142d0c6-945d-4085-b9f7-81e52afa253b",
"url": "http://uri.suomi.fi/codelist/fairdata/license/code/other",
"in_scheme": "http://uri.suomi.fi/codelist/fairdata/license",
"pref_label": {
"en": "Other",
"fi": "Muu"
}
}
],
"access_type": {
"id": "d01ac02c-fc70-4c68-9434-8383cb693ff0",
"url": "http://uri.suomi.fi/codelist/fairdata/access_type/code/open",
"in_scheme": "http://uri.suomi.fi/codelist/fairdata/access_type",
"pref_label": {
"en": "Open",
"fi": "Avoin"
}
},
"restriction_grounds": []
},
"actors": [
{
"id": "df853ec6-8371-446c-91aa-0cc8ea392057",
"roles": [
"creator"
],
"person": {
"id": "f31dab6d-9485-453d-a786-cdbd1f5779af",
"name": "Antero Vanhala"
},
"organization": {
"id": "99bc67e3-70d6-48b5-8aeb-933b1e3d2893",
"pref_label": {
"en": "University of Helsinki",
"fi": "University of Helsinki",
"sv": "University of Helsinki"
}
}
},
{
"id": "258e3107-fc2f-49df-82b5-44068fd6ae2e",
"roles": [
"creator"
],
"person": {
"id": "c0bba6ae-9f09-4b88-a6ae-5cf14add1dcc",
"name": "Anna-Rosa Lehto"
},
"organization": {
"id": "485e0e72-6fbf-4b20-8a5d-f15d6bc75d57",
"pref_label": {
"en": "Aalto University",
"fi": "Aalto University",
"sv": "Aalto University"
}
}
},
{
"id": "23cb07e9-b1be-4204-a665-a1e227dbdd77",
"roles": [
"creator"
],
"person": {
"id": "e9858c05-fcba-43fa-98cc-b90af869b415",
"name": "Anu Maksimow"
},
"organization": {
"id": "9ecdcf83-e9fe-47d5-b2bd-8119f9ae5dc2",
"pref_label": {
"en": "Helsinki University Central Hospital",
"fi": "Helsinki University Central Hospital",
"sv": "Helsinki University Central Hospital"
}
}
},
{
"id": "9fe6c50c-bf61-4f4b-b641-009867e17c25",
"roles": [
"creator"
],
"person": {
"id": "d03a7e65-3aaf-47ed-ab48-34939b62d758",
"name": "Paulus Torkki",
"external_identifier": "https://orcid.org/0000-0002-1127-4205"
},
"organization": {
"id": "99bc67e3-70d6-48b5-8aeb-933b1e3d2893",
"pref_label": {
"en": "University of Helsinki",
"fi": "University of Helsinki",
"sv": "University of Helsinki"
}
}
},
{
"id": "68c20edd-4f87-4c5a-a126-68994a3fd734",
"roles": [
"creator"
],
"person": {
"id": "71e5990e-432a-479c-bbbf-384050e02957",
"name": "Sanna-Maria Kivivuori"
},
"organization": {
"id": "9ecdcf83-e9fe-47d5-b2bd-8119f9ae5dc2",
"pref_label": {
"en": "Helsinki University Central Hospital",
"fi": "Helsinki University Central Hospital",
"sv": "Helsinki University Central Hospital"
}
}
},
{
"id": "764465f0-518c-4989-bea6-3ebeb11727d6",
"roles": [
"publisher"
],
"organization": {
"id": "def57594-0b82-4dd6-96d8-2159e42aff10",
"pref_label": {
"en": "figshare",
"fi": "figshare",
"sv": "figshare"
}
}
}
],
"cumulative_state": 0,
"data_catalog": "urn:nbn:fi:att:data-catalog-acris",
"description": {
"en": "Abstract Background The choice of what patient outcomes are included in clinical quality registries is crucial for comparable and relevant data collection. Ideally, a uniform outcome framework could be used to classify the outcomes included in registries, steer the development of outcome measurement, and ultimately enable better patient care through benchmarking and registry research. The aim of this study was to compare clinical quality registry outcomes against the COMET taxonomy to assess its suitability in the registry context. Methods We conducted an organizational case study that included outcomes from 63 somatic clinical quality registries in use at HUS Helsinki University Hospital, Finland. Outcomes were extracted and classified according to the COMET taxonomy and the suitability of the taxonomy was assessed. Results HUS clinical quality registries showed great variation in outcome domains and in number of measures. Physiological outcomes were present in 98%, resource use in all, and functioning domains in 62% of the registries. Patient-reported outcome measures were found in 48% of the registries. Conclusions The COMET taxonomy was found to be mostly suitable for classifying the choice of outcomes in clinical quality registries, but improvements are suggested. HUS Helsinki University Hospital clinical quality registries exist at different maturity levels, showing room for improvement in life impact outcomes and in outcome prioritization. This article offers an example of classifying the choice of outcomes included in clinical quality registries and a comparison point for other registry evaluators."
},
"field_of_science": [
{
"id": "6dc03e79-42a5-4dfa-94e0-80469342b5d1",
"url": "http://www.yso.fi/onto/okm-tieteenala/ta512",
"in_scheme": "http://www.yso.fi/onto/okm-tieteenala/conceptscheme",
"pref_label": {
"en": "Business and management",
"fi": "Liiketaloustiede",
"sv": "Företagsekonomi"
}
}
],
"infrastructure": [],
"issued": "2022-01-01",
"keyword": [],
"language": [],
"metadata_owner": {
"id": "ac3f9596-0e50-4ac1-9c16-1e143e4e60b5",
"organization": "aalto.fi",
"admin_organization": "aalto.fi"
},
"other_identifiers": [],
"persistent_identifier": "10.6084/m9.figshare.c.6057987.v1",
"pid_generated_by_fairdata": false,
"projects": [],
"provenance": [],
"relation": [],
"remote_resources": [
{
"title": {
"en": "Data in remote location",
"fi": "Aineisto ulkoisessa palvelussa",
"sv": "Material i en extern tjänst",
"und": "Data in remote location"
},
"use_category": {
"id": "d91e6ce8-6567-441e-96e8-9d706570a677",
"url": "http://uri.suomi.fi/codelist/fairdata/use_category/code/source",
"in_scheme": "http://uri.suomi.fi/codelist/fairdata/use_category",
"pref_label": {
"en": "Source material",
"fi": "Lähdeaineisto"
}
},
"download_url": "https://springernature.figshare.com/collections/Classifying_outcomes_in_secondary_and_tertiary_care_clinical_quality_registries_an_organizational_case_study_with_the_COMET_taxonomy/6057987/1"
}
],
"spatial": [],
"state": "published",
"temporal": [],
"theme": [],
"title": {
"en": "Classifying outcomes in secondary and tertiary care clinical quality registries—an organizational case study with the COMET taxonomy"
},
"created": "2025-11-17T11:06:25Z",
"modified": "2025-11-17T11:06:25Z",
"dataset_versions": [
{
"id": "7653f772-2461-4697-8538-82cb34d9b0cf",
"title": {
"en": "Classifying outcomes in secondary and tertiary care clinical quality registries—an organizational case study with the COMET taxonomy"
},
"persistent_identifier": "10.6084/m9.figshare.c.6057987.v1",
"state": "published",
"created": "2025-11-17T11:06:25Z",
"version": 1
}
],
"published_revision": 1,
"version": 1,
"api_version": 3,
"metadata_repository": "Fairdata"
},
{
"id": "8857b9b2-f3a6-490e-94ab-7f05318b289b",
"access_rights": {
"id": "99c3dc03-af87-4fb5-8dc1-11d4f0bb5e36",
"license": [
{
"id": "35b18e72-3819-4ec6-a1be-14624f29d968",
"url": "http://uri.suomi.fi/codelist/fairdata/license/code/CC-BY-4.0",
"in_scheme": "http://uri.suomi.fi/codelist/fairdata/license",
"pref_label": {
"en": "Creative Commons Attribution 4.0 International (CC BY 4.0)",
"fi": "Creative Commons Nimeä 4.0 Kansainvälinen (CC BY 4.0)"
}
}
],
"access_type": {
"id": "d01ac02c-fc70-4c68-9434-8383cb693ff0",
"url": "http://uri.suomi.fi/codelist/fairdata/access_type/code/open",
"in_scheme": "http://uri.suomi.fi/codelist/fairdata/access_type",
"pref_label": {
"en": "Open",
"fi": "Avoin"
}
},
"restriction_grounds": []
},
"actors": [
{
"id": "2eefd69f-7edf-4c9a-9f3e-1e73c4b8cae2",
"roles": [
"creator"
],
"person": {
"id": "8be4b26f-1fa8-454e-8a11-0d04a844c1ea",
"name": "Onur Poyraz",
"external_identifier": "https://orcid.org/0000-0002-8257-2250"
},
"organization": {
"id": "c7963c8c-37b7-4962-84a4-4fe651b4ccb7",
"pref_label": {
"en": "Department of Computer Science",
"fi": "Department of Computer Science",
"sv": "Department of Computer Science",
"und": "Department of Computer Science"
},
"url": "http://uri.suomi.fi/codelist/fairdata/organization/code/10076-T313",
"in_scheme": "http://uri.suomi.fi/codelist/fairdata/organization",
"parent": {
"id": "7d61af1c-0cc6-46fe-9940-21da2b080cb3",
"pref_label": {
"en": "Aalto University",
"fi": "Aalto-yliopisto",
"sv": "Aalto-universitetet",
"und": "Aalto-yliopisto"
},
"url": "http://uri.suomi.fi/codelist/fairdata/organization/code/10076",
"in_scheme": "http://uri.suomi.fi/codelist/fairdata/organization"
}
}
},
{
"id": "86b1c63c-3803-47a9-9151-2232d4962302",
"roles": [
"creator"
],
"person": {
"id": "2250dc6d-9ff8-47be-a1f9-26789ef9df4c",
"name": "Mohamad R. A. Sater"
},
"organization": {
"id": "91849347-07d8-466a-80cc-5a67d2d49141",
"pref_label": {
"en": "Harvard T.H. Chan School of Public Health",
"fi": "Harvard T.H. Chan School of Public Health",
"sv": "Harvard T.H. Chan School of Public Health"
}
}
},
{
"id": "3c3ebf7a-a5fc-4475-8703-628d666d89fc",
"roles": [
"creator"
],
"person": {
"id": "70725286-b04f-4ba6-961a-7486c81e53cd",
"name": "Loren G. Miller"
},
"organization": {
"id": "8c992db7-3129-42ab-9118-be4a93d21abd",
"pref_label": {
"en": "Harbor-UCLA Medical Center"
}
}
},
{
"id": "287f1e20-f7b0-4dd9-845e-9b9c1e96b6b4",
"roles": [
"creator"
],
"person": {
"id": "2b911bf1-728c-44fd-bafb-766af4ef105e",
"name": "James A. McKinnell"
},
"organization": {
"id": "8c992db7-3129-42ab-9118-be4a93d21abd",
"pref_label": {
"en": "Harbor-UCLA Medical Center"
}
}
},
{
"id": "1e0ce733-2c49-48cd-b937-bf909281000b",
"roles": [
"creator"
],
"person": {
"id": "938f768b-0e49-45d4-ad83-ca4be5b32d4a",
"name": "Susan S. Huang"
},
"organization": {
"id": "260e797a-d6bf-4c8c-9c83-ad6040fcc47b",
"pref_label": {
"en": "University of California, Irvine",
"fi": "University of California",
"sv": "University of California"
}
}
},
{
"id": "0e68e499-f890-44e0-a840-672d6229c250",
"roles": [
"creator"
],
"person": {
"id": "4a60c31f-95b0-46e2-ba63-e94156b7c94d",
"name": "Yonatan H. Grad"
},
"organization": {
"id": "91849347-07d8-466a-80cc-5a67d2d49141",
"pref_label": {
"en": "Harvard T.H. Chan School of Public Health",
"fi": "Harvard T.H. Chan School of Public Health",
"sv": "Harvard T.H. Chan School of Public Health"
}
}
},
{
"id": "358f1750-1642-4302-92f7-d95a81541075",
"roles": [
"creator"
],
"person": {
"id": "d92b1ce5-81b4-4880-ab5b-f67038c9a3d9",
"name": "Pekka Marttinen",
"external_identifier": "https://orcid.org/0000-0001-7078-7927"
},
"organization": {
"id": "c7963c8c-37b7-4962-84a4-4fe651b4ccb7",
"pref_label": {
"en": "Department of Computer Science",
"fi": "Department of Computer Science",
"sv": "Department of Computer Science",
"und": "Department of Computer Science"
},
"url": "http://uri.suomi.fi/codelist/fairdata/organization/code/10076-T313",
"in_scheme": "http://uri.suomi.fi/codelist/fairdata/organization",
"parent": {
"id": "7d61af1c-0cc6-46fe-9940-21da2b080cb3",
"pref_label": {
"en": "Aalto University",
"fi": "Aalto-yliopisto",
"sv": "Aalto-universitetet",
"und": "Aalto-yliopisto"
},
"url": "http://uri.suomi.fi/codelist/fairdata/organization/code/10076",
"in_scheme": "http://uri.suomi.fi/codelist/fairdata/organization"
}
}
},
{
"id": "71a90fc8-1f43-4899-9b98-6af1fb71b500",
"roles": [
"publisher"
],
"organization": {
"id": "58ba6821-cd87-4861-8510-ec99bdaee8f6",
"pref_label": {
"en": "figshare",
"fi": "figshare",
"sv": "figshare"
}
}
}
],
"cumulative_state": 0,
"data_catalog": "urn:nbn:fi:att:data-catalog-acris",
"description": {
"en": "Methicillin-resistant Staphylococcus aureus (MRSA) can colonize multiple body sites, and carriage is a risk factor for infection. Successful decolonization protocols reduce disease incidence; however, multiple protocols exist, comprising diverse therapies targeting multiple body sites, and the optimal protocol is unclear. Standard methods cannot infer the impact of site-specific components on successful decolonization. Here, we formulate a Bayesian coupled hidden Markov model, which estimates interactions between body sites, quantifies the contribution of each therapy to successful decolonization, and enables predictions of the efficacy of therapy combinations. We applied the model to longitudinal data from a randomized controlled trial (RCT) of an MRSA decolonization protocol consisting of chlorhexidine body and mouthwash and nasal mupirocin. Our findings (1) confirmed nares as a central hub for MRSA colonization and nasal mupirocin as the most crucial therapy, and (2) demonstrated all components contributed significantly to the efficacy of the protocol and the protocol reduced self-inoculation. Finally, we assessed the impact of hypothetical therapy improvements in silico and found that enhancing MRSA clearance at the skin would yield the largest gains. This study demonstrates the use of advanced modelling to go beyond what is typically achieved by RCTs, enabling evidence-based decision-making to streamline clinical protocols."
},
"field_of_science": [
{
"id": "33d291b9-9b23-4192-b878-cffc210af1d3",
"url": "http://www.yso.fi/onto/okm-tieteenala/ta113",
"in_scheme": "http://www.yso.fi/onto/okm-tieteenala/conceptscheme",
"pref_label": {
"en": "Computer and information sciences",
"fi": "Tietojenkäsittely ja informaatiotieteet",
"sv": "Data- och informationsvetenskap"
}
}
],
"infrastructure": [],
"issued": "2022-01-01",
"keyword": [],
"language": [],
"metadata_owner": {
"id": "ac3f9596-0e50-4ac1-9c16-1e143e4e60b5",
"organization": "aalto.fi",
"admin_organization": "aalto.fi"
},
"other_identifiers": [],
"persistent_identifier": "10.6084/m9.figshare.c.6016851.v2",
"pid_generated_by_fairdata": false,
"projects": [],
"provenance": [],
"relation": [],
"remote_resources": [
{
"title": {
"en": "Data in remote location",
"fi": "Aineisto ulkoisessa palvelussa",
"sv": "Material i en extern tjänst",
"und": "Data in remote location"
},
"use_category": {
"id": "d91e6ce8-6567-441e-96e8-9d706570a677",
"url": "http://uri.suomi.fi/codelist/fairdata/use_category/code/source",
"in_scheme": "http://uri.suomi.fi/codelist/fairdata/use_category",
"pref_label": {
"en": "Source material",
"fi": "Lähdeaineisto"
}
},
"download_url": "https://rs.figshare.com/collections/Supplementary_material_from_Modelling_methicillin-resistant_i_Staphylococcus_aureus_i_decolonization_interactions_between_body_sites_and_the_impact_of_site-specific_clearance_/6016851/2"
}
],
"spatial": [],
"state": "published",
"temporal": [],
"theme": [],
"title": {
"en": "Supplementary material from \"Modelling methicillin-resistant Staphylococcus aureus decolonization: interactions between body sites and the impact of site-specific clearance\""
},
"created": "2025-11-17T11:06:21Z",
"modified": "2025-11-17T11:06:21Z",
"dataset_versions": [
{
"id": "8857b9b2-f3a6-490e-94ab-7f05318b289b",
"title": {
"en": "Supplementary material from \"Modelling methicillin-resistant Staphylococcus aureus decolonization: interactions between body sites and the impact of site-specific clearance\""
},
"persistent_identifier": "10.6084/m9.figshare.c.6016851.v2",
"state": "published",
"created": "2025-11-17T11:06:21Z",
"version": 1
}
],
"published_revision": 1,
"version": 1,
"api_version": 3,
"metadata_repository": "Fairdata"
},
{
"id": "b16dfc0f-dafe-4115-95ca-e6ca03b21341",
"access_rights": {
"id": "2e85de44-f452-47b2-910d-db660880c9f2",
"license": [
{
"id": "35b18e72-3819-4ec6-a1be-14624f29d968",
"url": "http://uri.suomi.fi/codelist/fairdata/license/code/CC-BY-4.0",
"in_scheme": "http://uri.suomi.fi/codelist/fairdata/license",
"pref_label": {
"en": "Creative Commons Attribution 4.0 International (CC BY 4.0)",
"fi": "Creative Commons Nimeä 4.0 Kansainvälinen (CC BY 4.0)"
}
}
],
"access_type": {
"id": "d01ac02c-fc70-4c68-9434-8383cb693ff0",
"url": "http://uri.suomi.fi/codelist/fairdata/access_type/code/open",
"in_scheme": "http://uri.suomi.fi/codelist/fairdata/access_type",
"pref_label": {
"en": "Open",
"fi": "Avoin"
}
},
"restriction_grounds": []
},
"actors": [
{
"id": "50fcc245-904a-463f-81f4-2e07557343b1",
"roles": [
"creator"
],
"person": {
"id": "de50376b-381b-4847-81aa-c0223efde48c",
"name": "Fahime Seyedheydari",
"external_identifier": "https://orcid.org/"
},
"organization": {
"id": "bc4c943c-ddaa-4195-aaaa-6d97aa34d359",
"pref_label": {
"en": "Department of Applied Physics",
"fi": "Department of Applied Physics",
"sv": "Department of Applied Physics",
"und": "Department of Applied Physics"
},
"url": "http://uri.suomi.fi/codelist/fairdata/organization/code/10076-T304",
"in_scheme": "http://uri.suomi.fi/codelist/fairdata/organization",
"parent": {
"id": "7d61af1c-0cc6-46fe-9940-21da2b080cb3",
"pref_label": {
"en": "Aalto University",
"fi": "Aalto-yliopisto",
"sv": "Aalto-universitetet",
"und": "Aalto-yliopisto"
},
"url": "http://uri.suomi.fi/codelist/fairdata/organization/code/10076",
"in_scheme": "http://uri.suomi.fi/codelist/fairdata/organization"
}
}
},
{
"id": "1027adbe-f163-44d5-8497-7b4119d77c69",
"roles": [
"creator"
],
"person": {
"id": "06f61e38-c21a-4ee0-9cfe-f95b116cd729",
"name": "Kevin Conley",
"external_identifier": "https://orcid.org/0000-0001-7780-3096"
},
"organization": {
"id": "5bda7535-0300-4299-b15d-b4950d914702",
"pref_label": {
"en": "Department of Chemistry and Materials Science",
"fi": "Department of Chemistry and Materials Science",
"sv": "Department of Chemistry and Materials Science",
"und": "Department of Chemistry and Materials Science"
},
"url": "http://uri.suomi.fi/codelist/fairdata/organization/code/10076-T105",
"in_scheme": "http://uri.suomi.fi/codelist/fairdata/organization",
"parent": {
"id": "7d61af1c-0cc6-46fe-9940-21da2b080cb3",
"pref_label": {
"en": "Aalto University",
"fi": "Aalto-yliopisto",
"sv": "Aalto-universitetet",
"und": "Aalto-yliopisto"
},
"url": "http://uri.suomi.fi/codelist/fairdata/organization/code/10076",
"in_scheme": "http://uri.suomi.fi/codelist/fairdata/organization"
}
}
},
{
"id": "db4d2fa3-593b-4ca3-aaf6-08aa34568a2a",
"roles": [
"creator"
],
"person": {
"id": "ac5e5d4e-264a-4039-b68d-32f095e33ad0",
"name": "Pasi Ylä-Oijala",
"external_identifier": "https://orcid.org/"
},
"organization": {
"id": "8807c162-eb34-42ca-9199-a348e03b480d",
"pref_label": {
"en": "Department of Electronics and Nanoengineering",
"fi": "Department of Electronics and Nanoengineering",
"sv": "Department of Electronics and Nanoengineering",
"und": "Department of Electronics and Nanoengineering"
},
"url": "http://uri.suomi.fi/codelist/fairdata/organization/code/10076-T411",
"in_scheme": "http://uri.suomi.fi/codelist/fairdata/organization",
"parent": {
"id": "7d61af1c-0cc6-46fe-9940-21da2b080cb3",
"pref_label": {
"en": "Aalto University",
"fi": "Aalto-yliopisto",
"sv": "Aalto-universitetet",
"und": "Aalto-yliopisto"
},
"url": "http://uri.suomi.fi/codelist/fairdata/organization/code/10076",
"in_scheme": "http://uri.suomi.fi/codelist/fairdata/organization"
}
}
},
{
"id": "60e74d14-31c1-4388-a162-bcad093a219e",
"roles": [
"creator"
],
"person": {
"id": "05161500-0bc9-4cd9-a480-9eb6ea13adb8",
"name": "Ari Sihvola",
"external_identifier": "https://orcid.org/0000-0001-7661-8913"
},
"organization": {
"id": "8807c162-eb34-42ca-9199-a348e03b480d",
"pref_label": {
"en": "Department of Electronics and Nanoengineering",
"fi": "Department of Electronics and Nanoengineering",
"sv": "Department of Electronics and Nanoengineering",
"und": "Department of Electronics and Nanoengineering"
},
"url": "http://uri.suomi.fi/codelist/fairdata/organization/code/10076-T411",
"in_scheme": "http://uri.suomi.fi/codelist/fairdata/organization",
"parent": {
"id": "7d61af1c-0cc6-46fe-9940-21da2b080cb3",
"pref_label": {
"en": "Aalto University",
"fi": "Aalto-yliopisto",
"sv": "Aalto-universitetet",
"und": "Aalto-yliopisto"
},
"url": "http://uri.suomi.fi/codelist/fairdata/organization/code/10076",
"in_scheme": "http://uri.suomi.fi/codelist/fairdata/organization"
}
}
},
{
"id": "f4d6245d-75f6-4914-b9bd-7943e72e5d6e",
"roles": [
"creator"
],
"person": {
"id": "33d44d0b-609e-41f6-b80c-5ea5da140db9",
"name": "Tapio Ala-Nissila",
"external_identifier": "https://orcid.org/0000-0002-3210-3181"
},
"organization": {
"id": "bc4c943c-ddaa-4195-aaaa-6d97aa34d359",
"pref_label": {
"en": "Department of Applied Physics",
"fi": "Department of Applied Physics",
"sv": "Department of Applied Physics",
"und": "Department of Applied Physics"
},
"url": "http://uri.suomi.fi/codelist/fairdata/organization/code/10076-T304",
"in_scheme": "http://uri.suomi.fi/codelist/fairdata/organization",
"parent": {
"id": "7d61af1c-0cc6-46fe-9940-21da2b080cb3",
"pref_label": {
"en": "Aalto University",
"fi": "Aalto-yliopisto",
"sv": "Aalto-universitetet",
"und": "Aalto-yliopisto"
},
"url": "http://uri.suomi.fi/codelist/fairdata/organization/code/10076",
"in_scheme": "http://uri.suomi.fi/codelist/fairdata/organization"
}
}
},
{
"id": "ee95e831-b101-4831-ac2c-7c9734cf503f",
"roles": [
"publisher"
],
"organization": {
"id": "4c3e07fa-e0d6-47bf-8270-b559d7058f6f",
"pref_label": {
"en": "figshare",
"fi": "figshare",
"sv": "figshare"
}
}
}
],
"cumulative_state": 0,
"data_catalog": "urn:nbn:fi:att:data-catalog-acris",
"description": {
"en": "We investigate the electromagnetic response of anisotropic copper antimony disulfide (CuSbS₂) nanoparticles and layers embedded with them for solar applications and near-infrared (NIR) sensors using computational methods. To this end we calculate the scattering and absorption efficiencies of oblate spheroidal CuSbS₂ nanoparticles using the surface integral equation method. We further investigate the optical response of thin layers containing CuSbS₂ spheroids at low volume fraction using a Monte Carlo method. We find that response of these layers can be considerably modified by changing the short axis length and the orientation of the particles within the layer with respect to the incoming radiation. This allows engineering the layers for specific polarization-dependent-response applications."
},
"field_of_science": [
{
"id": "7e12a692-26de-4e3c-b28c-64f8a32ef40a",
"url": "http://www.yso.fi/onto/okm-tieteenala/ta114",
"in_scheme": "http://www.yso.fi/onto/okm-tieteenala/conceptscheme",
"pref_label": {
"en": "Physical sciences",
"fi": "Fysiikka",
"sv": "Fysik"
}
}
],
"infrastructure": [],
"issued": "2022-01-01",
"keyword": [],
"language": [],
"metadata_owner": {
"id": "ac3f9596-0e50-4ac1-9c16-1e143e4e60b5",
"organization": "aalto.fi",
"admin_organization": "aalto.fi"
},
"other_identifiers": [],
"persistent_identifier": "10.6084/m9.figshare.c.6000049.v2",
"pid_generated_by_fairdata": false,
"projects": [],
"provenance": [],
"relation": [],
"remote_resources": [
{
"title": {
"en": "Data in remote location",
"fi": "Aineisto ulkoisessa palvelussa",
"sv": "Material i en extern tjänst",
"und": "Data in remote location"
},
"use_category": {
"id": "d91e6ce8-6567-441e-96e8-9d706570a677",
"url": "http://uri.suomi.fi/codelist/fairdata/use_category/code/source",
"in_scheme": "http://uri.suomi.fi/codelist/fairdata/use_category",
"pref_label": {
"en": "Source material",
"fi": "Lähdeaineisto"
}
},
"download_url": "https://opticapublishing.figshare.com/collections/Electromagnetic_Response_and_Optical_Properties_of_Anisotropic_CuSbS_Nanoparticles/6000049/2"
}
],
"spatial": [],
"state": "published",
"temporal": [],
"theme": [],
"title": {
"en": "Electromagnetic Response and Optical Properties of Anisotropic CuSbS₂ Nanoparticles"
},
"created": "2025-11-17T11:06:18Z",
"modified": "2025-11-17T11:06:18Z",
"dataset_versions": [
{
"id": "b16dfc0f-dafe-4115-95ca-e6ca03b21341",
"title": {
"en": "Electromagnetic Response and Optical Properties of Anisotropic CuSbS₂ Nanoparticles"
},
"persistent_identifier": "10.6084/m9.figshare.c.6000049.v2",
"state": "published",
"created": "2025-11-17T11:06:18Z",
"version": 1
}
],
"published_revision": 1,
"version": 1,
"api_version": 3,
"metadata_repository": "Fairdata"
},
{
"id": "d2c66763-0bfa-495e-96e4-0fed7544aab0",
"access_rights": {
"id": "93036ef8-aeca-47d4-a740-e1c448a6abed",
"license": [
{
"id": "6142d0c6-945d-4085-b9f7-81e52afa253b",
"url": "http://uri.suomi.fi/codelist/fairdata/license/code/other",
"in_scheme": "http://uri.suomi.fi/codelist/fairdata/license",
"pref_label": {
"en": "Other",
"fi": "Muu"
}
}
],
"access_type": {
"id": "d01ac02c-fc70-4c68-9434-8383cb693ff0",
"url": "http://uri.suomi.fi/codelist/fairdata/access_type/code/open",
"in_scheme": "http://uri.suomi.fi/codelist/fairdata/access_type",
"pref_label": {
"en": "Open",
"fi": "Avoin"
}
},
"restriction_grounds": []
},
"actors": [
{
"id": "b3808edf-b455-4537-bf38-f8f3dcdd735c",
"roles": [
"contributor"
],
"person": {
"id": "8346e79c-ad6f-4139-a386-010a41391c0d",
"name": "Alexander Lau"
},
"organization": {
"id": "1ee2767b-5fbe-4d04-83d5-e32bc84cc00d",
"pref_label": {
"en": "Polish Academy of Sciences",
"fi": "Polish Academy of Sciences",
"sv": "Polish Academy of Sciences"
}
}
},
{
"id": "afdb923e-18e3-4694-8ee8-cbf6523ccb71",
"roles": [
"creator"
],
"person": {
"id": "e8b429a4-01c7-435e-90b8-08a20dce7a29",
"name": "Sebastiano Peotta",
"external_identifier": "https://orcid.org/0000-0002-9947-1261"
},
"organization": {
"id": "bc4c943c-ddaa-4195-aaaa-6d97aa34d359",
"pref_label": {
"en": "Department of Applied Physics",
"fi": "Department of Applied Physics",
"sv": "Department of Applied Physics",
"und": "Department of Applied Physics"
},
"url": "http://uri.suomi.fi/codelist/fairdata/organization/code/10076-T304",
"in_scheme": "http://uri.suomi.fi/codelist/fairdata/organization",
"parent": {
"id": "7d61af1c-0cc6-46fe-9940-21da2b080cb3",
"pref_label": {
"en": "Aalto University",
"fi": "Aalto-yliopisto",
"sv": "Aalto-universitetet",
"und": "Aalto-yliopisto"
},
"url": "http://uri.suomi.fi/codelist/fairdata/organization/code/10076",
"in_scheme": "http://uri.suomi.fi/codelist/fairdata/organization"
}
}
},
{
"id": "adffd941-0de8-4339-8e38-8b02a5bdbf99",
"roles": [
"contributor"
],
"person": {
"id": "50bb56f1-36bf-4603-991d-01880f75d8fe",
"name": "Dmitry I. Pikulin"
},
"organization": {
"id": "0c80e715-632d-42f1-9fb4-38223d6c8f3d",
"pref_label": {
"en": "Microsoft",
"fi": "Microsoft",
"sv": "Microsoft"
}
}
},
{
"id": "27c40c8a-0172-4c32-ac13-8957952710e4",
"roles": [
"contributor"
],
"person": {
"id": "670547dd-a98c-42e3-9f40-8000ab055105",
"name": "Enrico Rossi"
},
"organization": {
"id": "eeb4703e-2a15-4835-a381-d96489ff3a26",
"pref_label": {
"en": "College of William and Mary",
"fi": "College of William and Mary",
"sv": "College of William and Mary"
}
}
},
{
"id": "55215a63-c1df-4d40-8b92-5f100f777266",
"roles": [
"contributor"
],
"person": {
"id": "ced1d668-83ab-4e41-893f-75c959f5bb1e",
"name": "Timo Hyart",
"external_identifier": "https://orcid.org/0000-0003-2587-9755"
},
"organization": {
"id": "bc4c943c-ddaa-4195-aaaa-6d97aa34d359",
"pref_label": {
"en": "Department of Applied Physics",
"fi": "Department of Applied Physics",
"sv": "Department of Applied Physics",
"und": "Department of Applied Physics"
},
"url": "http://uri.suomi.fi/codelist/fairdata/organization/code/10076-T304",
"in_scheme": "http://uri.suomi.fi/codelist/fairdata/organization",
"parent": {
"id": "7d61af1c-0cc6-46fe-9940-21da2b080cb3",
"pref_label": {
"en": "Aalto University",
"fi": "Aalto-yliopisto",
"sv": "Aalto-universitetet",
"und": "Aalto-yliopisto"
},
"url": "http://uri.suomi.fi/codelist/fairdata/organization/code/10076",
"in_scheme": "http://uri.suomi.fi/codelist/fairdata/organization"
}
}
},
{
"id": "43c167ee-7970-4ed2-834d-1a826d79077f",
"roles": [
"publisher"
],
"organization": {
"id": "24e23de8-a88b-4138-8fd4-bd5dc3e1535d",
"pref_label": {
"en": "Zenodo",
"fi": "Zenodo",
"sv": "Zenodo"
}
}
}
],
"cumulative_state": 0,
"data_catalog": "urn:nbn:fi:att:data-catalog-acris",
"description": {
"en": "Motivated by the experimental progress in controlling the properties of the energy bands in superconductors, significant theoretical efforts have been devoted to study the effect of the quantum geometry and the flatness of the dispersion on the superfluid weight. In conventional superconductors, where the energy bands are wide and the Fermi energy is large, the contribution due to the quantum geometry is negligible, but in the opposite limit of flat-band superconductors the superfluid weight originates purely from the quantum geometry of Bloch wave functions.\r\n\r\nHere, we study how the energy band dispersion and the quantum geometry affect the disorder-induced suppression of the superfluid weight. In particular, we consider non-magnetic disorder and s-wave superconductivity. Surprisingly, we find that the disorder-dependence of the superfluid weight is universal across a variety of models, and independent of the quantum geometry and the flatness of the dispersion. Our results suggest that a flat-band superconductor is as resilient to disorder as a conventional superconductor.\r\n\r\nThe provided repository contains all code and data to reproduce the results of this study."
},
"field_of_science": [
{
"id": "7e12a692-26de-4e3c-b28c-64f8a32ef40a",
"url": "http://www.yso.fi/onto/okm-tieteenala/ta114",
"in_scheme": "http://www.yso.fi/onto/okm-tieteenala/conceptscheme",
"pref_label": {
"en": "Physical sciences",
"fi": "Fysiikka",
"sv": "Fysik"
}
}
],
"infrastructure": [],
"issued": "2022-08-11",
"keyword": [],
"language": [],
"metadata_owner": {
"id": "ac3f9596-0e50-4ac1-9c16-1e143e4e60b5",
"organization": "aalto.fi",
"admin_organization": "aalto.fi"
},
"other_identifiers": [],
"persistent_identifier": "10.5281/zenodo.6012754",
"pid_generated_by_fairdata": false,
"projects": [],
"provenance": [],
"relation": [],
"remote_resources": [
{
"title": {
"en": "Data in remote location",
"fi": "Aineisto ulkoisessa palvelussa",
"sv": "Material i en extern tjänst",
"und": "Data in remote location"
},
"use_category": {
"id": "d91e6ce8-6567-441e-96e8-9d706570a677",
"url": "http://uri.suomi.fi/codelist/fairdata/use_category/code/source",
"in_scheme": "http://uri.suomi.fi/codelist/fairdata/use_category",
"pref_label": {
"en": "Source material",
"fi": "Lähdeaineisto"
}
},
"download_url": "https://zenodo.org/record/6982979"
}
],
"spatial": [],
"state": "published",
"temporal": [],
"theme": [],
"title": {
"en": "Universal suppression of superfluid weight by non-magnetic disorder in s-wave superconductors independent of quantum geometry and band dispersion"
},
"created": "2025-11-17T11:06:15Z",
"modified": "2025-11-17T11:06:15Z",
"dataset_versions": [
{
"id": "d2c66763-0bfa-495e-96e4-0fed7544aab0",
"title": {
"en": "Universal suppression of superfluid weight by non-magnetic disorder in s-wave superconductors independent of quantum geometry and band dispersion"
},
"persistent_identifier": "10.5281/zenodo.6012754",
"state": "published",
"created": "2025-11-17T11:06:15Z",
"version": 1
}
],
"published_revision": 1,
"version": 1,
"api_version": 3,
"metadata_repository": "Fairdata"
}
]
}