Skip to content

mixins#

V2DatasetMixin#

Mixin for converting the class object into v2 Dataset

Attributes:

Name Type Description
temporal QuerySet

Set members must have end_date and start_date attributes

other_identifiers QuerySet

Set members must have notation and identifier_type attributes. identifier_type must have reference-data compatible attributes.

spatial QuerySet

Set members must have geographic_name, reference, full_address, altitude_in_meters and custom_wkt attributes. reference must have refdata.Location compatible attributes.

provenance QuerySet

Set members must have title, description, spatial, variable, lifecycle_event, event_outcome, outcome_description and is_associated_with attributes. spatial must have refdata.Location compatible attributes. variable, lifecycle_event, event_outcome and outcome_description must have reference-data compatible attributes. is_associated_with Set members must have person and organization attributes.

access_rights object

Object must be compatible with AccessRights model attributes

is_output_of QuerySet

Set members must have DatasetProject compatible attributes.

actors QuerySet

Set members must have DatasetActor compatible attributes.

deprecated datetime

Indicates when dataset was deprecated

preservation_state int

Long term preservation state of the dataset

state str

State of the dataset, can be draft or published

cumulative_state int

Cumulative state of the dataset

created datetime

Datetime when the dataset was created

removed datetime

Indicates when dataset was removed

metadata_owner object

Object must be compatible with MetadataProvider model attributes

title dict

Dataset title in form of {"fi": "otsikko", "en": "title"}

description dict

Dataset description in form of {"fi": "kuvaus", "en": "description"}

modified datetime

Datetime when the dataset was last modified

persistent_identifier str

Persistent identifier of the dataset

keyword str

Keyword of the dataset

theme Queryset

The main category of the dataset

relation Queryset

Relation to another entity.

data_catalog object

Object must be compatible with DataCatalog model attributes

cumulation_started datetime

Datetime when the dataset started accumulation process

last_cumulative_addition datetime

Datetime when the dataset had last cumulative event

preservation_identifier str

Preservation identifier of the dataset

last_modified_by object

Object must be compatible with User model attributes

issued datetime

Datetime when the dataset was issued

Source code in src/apps/core/models/mixins.py
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
class V2DatasetMixin:
    """Mixin for converting the class object into v2 Dataset

    Attributes:
        temporal (QuerySet): Set members must have `end_date` and `start_date` attributes
        other_identifiers (QuerySet): Set members must have
            `notation` and `identifier_type` attributes.
            `identifier_type` must have reference-data compatible attributes.
        spatial (QuerySet): Set members must have
            `geographic_name`, `reference`, `full_address`, `altitude_in_meters`
            and `custom_wkt` attributes.
            `reference` must have `refdata.Location` compatible attributes.
        provenance (QuerySet): Set members must have `title`, `description`,
            `spatial`, `variable`, `lifecycle_event`, `event_outcome`,
            `outcome_description` and `is_associated_with` attributes.
            `spatial` must have `refdata.Location` compatible attributes.
            `variable`, `lifecycle_event`, `event_outcome` and `outcome_description`
            must have reference-data compatible attributes.
            `is_associated_with` Set members must have `person` and `organization` attributes.
        access_rights (object): Object must be compatible with AccessRights model attributes
        is_output_of (QuerySet): Set members must have DatasetProject compatible attributes.
        actors (QuerySet): Set members must have DatasetActor compatible attributes.
        deprecated (datetime): Indicates when dataset was deprecated
        preservation_state (int): Long term preservation state of the dataset
        state (str): State of the dataset, can be draft or published
        cumulative_state (int): Cumulative state of the dataset
        created (datetime): Datetime when the dataset was created
        removed (datetime): Indicates when dataset was removed
        metadata_owner (object): Object must be compatible with MetadataProvider model attributes
        title (dict): Dataset title in form of {"fi": "otsikko", "en": "title"}
        description (dict): Dataset description in form of {"fi": "kuvaus", "en": "description"}
        modified (datetime): Datetime when the dataset was last modified
        persistent_identifier (str): Persistent identifier of the dataset
        keyword (str): Keyword of the dataset
        theme (Queryset): The main category of the dataset
        relation (Queryset): Relation to another entity.
        data_catalog (object): Object must be compatible with DataCatalog model attributes
        cumulation_started (datetime): Datetime when the dataset started accumulation process
        last_cumulative_addition (datetime): Datetime when the dataset had last cumulative event
        preservation_identifier (str): Preservation identifier of the dataset
        last_modified_by (object): Object must be compatible with User model attributes
        issued (datetime): Datetime when the dataset was issued
    """

    # Cant use the real types because of circular imports
    temporal: QuerySet
    other_identifiers: QuerySet
    spatial: QuerySet
    provenance: QuerySet
    access_rights: object
    is_output_of: QuerySet
    actors: QuerySet
    theme: QuerySet
    deprecated: datetime
    preservation_state: int
    relation: QuerySet
    state: str
    cumulative_state: int
    created: datetime
    removed: datetime
    metadata_owner: object
    title: dict
    description: dict
    bibliographic_citation: Optional[str]
    modified: datetime
    persistent_identifier: str
    keyword: str
    data_catalog: object
    cumulation_started: datetime
    cumulation_ended: datetime
    last_cumulative_addition: datetime
    preservation_identifier: str
    last_modified_by: MetaxUser
    issued: datetime

    def _generate_v2_ref_data_field(
        self,
        field_name: str,
        document: Dict,
        pref_label_text: str = "pref_label",
        top_level_key_name: str = None,
        extra_top_level_fields: List = None,
        omit_scheme=False,
    ):
        """

        Args:
            field_name (RelatedManager): ForeignKey from which
                the reference data object is constructed
            document (Dict): V2 Dataset dictionary
            pref_label_text (): Object reference data key name
            top_level_key_name ():
            extra_top_level_fields ():

        Returns:

        """

        related_manager = getattr(self, field_name)
        if related_manager.count() == 0:
            return

        obj_list = []
        for row in related_manager.all():
            obj = {pref_label_text: row.pref_label, "identifier": row.url}
            if row.in_scheme and not omit_scheme:
                obj["in_scheme"] = row.in_scheme
            if top_level_key_name:
                obj = {top_level_key_name: obj}
                obj_list.append(obj)
            else:
                obj_list.append(obj)
            if extra_top_level_fields:
                for field in extra_top_level_fields:
                    if getattr(row, field) is not None:
                        value = getattr(row, field)
                        logger.info(f"{value=}")
                        obj.update({field: value})
        if len(obj_list) != 0:
            document["research_dataset"][field_name] = obj_list
        return obj_list

    def _construct_v2_spatial(self, model_obj):
        obj = {"geographic_name": model_obj.geographic_name}
        if model_obj.reference:
            place_uri_obj = {}
            if in_scheme := model_obj.reference.in_scheme:
                place_uri_obj["in_scheme"] = in_scheme
            if identifier := model_obj.reference.url:
                place_uri_obj["identifier"] = identifier
            if pref_label := model_obj.reference.pref_label:
                place_uri_obj["pref_label"] = pref_label
            obj["place_uri"] = place_uri_obj
        if full_address := model_obj.full_address:
            obj["full_address"] = full_address
        if altitude_in_meters := model_obj.altitude_in_meters:
            obj["alt"] = str(altitude_in_meters)
        as_wkt = []
        if model_obj.custom_wkt:
            custom_wkt = model_obj.custom_wkt
            as_wkt.extend(custom_wkt)
        elif model_obj.reference:
            if ref_wkt := model_obj.reference.as_wkt:
                as_wkt.append(ref_wkt)
        if len(as_wkt) > 0:
            obj["as_wkt"] = [v for v in as_wkt if v is not None]
        return obj

    def _generate_v2_other_identifiers(self, document: Dict):
        obj_list = []
        for identifier in self.other_identifiers.all():
            obj = {"notation": identifier.notation}
            if identifier.identifier_type:
                obj["type"] = {
                    "in_scheme": identifier.identifier_type.in_scheme,
                    "identifier": identifier.identifier_type.url,
                    "pref_label": identifier.identifier_type.pref_label,
                }
            obj_list.append(obj)
        if len(obj_list) != 0:
            document["research_dataset"]["other_identifier"] = obj_list
        return obj_list

    def _convert_v3_temporal_to_v2(self, temporal):
        """Convert single temporal object to v2."""
        v2_temporal = {}
        if temporal.start_date:
            v2_temporal["start_date"] = date_to_datetime(temporal.start_date).isoformat()
        if temporal.end_date:
            v2_temporal["end_date"] = date_to_datetime(temporal.end_date).isoformat()
        if temporal.temporal_coverage:
            v2_temporal["temporal_coverage"] = temporal.temporal_coverage
        return v2_temporal

    def _generate_v2_temporal(self, document: Dict):
        obj_list = []
        for temporal in self.temporal.filter(provenance=None):
            obj_list.append(self._convert_v3_temporal_to_v2(temporal))
        if len(obj_list) != 0:
            document["research_dataset"]["temporal"] = obj_list
        return obj_list

    def _generate_v2_spatial(self, document: Dict):
        obj_list = []
        for spatial in self.spatial.all():
            obj = self._construct_v2_spatial(spatial)
            obj_list.append(obj)
        if len(obj_list) != 0:
            document["research_dataset"]["spatial"] = obj_list
        return obj_list

    def _construct_v2_refdata_object(self, concept: AbstractConcept, omit_fields=[]):
        if not concept:
            return None
        obj = {
            "pref_label": concept.pref_label,
            "in_scheme": concept.in_scheme,
            "identifier": concept.url,
        }
        for field in omit_fields:
            obj.pop(field, None)
        return obj

    def _construct_v2_relation(self, relation):
        entity = relation.entity
        return {
            "relation_type": self._construct_v2_refdata_object(
                relation.relation_type, omit_fields=["in_scheme"]  # no relation type scheme in v2
            ),
            "entity": {
                "title": entity.title or None,
                "description": entity.description or None,
                "identifier": entity.entity_identifier or None,
                "type": self._construct_v2_refdata_object(entity.type),
            },
        }

    def _generate_v2_relation(self, document: Dict):
        obj_list = []
        for relation in self.relation.all():
            obj = self._construct_v2_relation(relation)
            obj_list.append(obj)
        if len(obj_list) != 0:
            document["research_dataset"]["relation"] = obj_list
        return obj_list

    def _construct_v2_concept(self, concept) -> Optional[Dict]:
        if not concept:
            return None
        return omit_none(
            {
                "pref_label": concept.pref_label,
                "definition": concept.definition,
                "identifier": concept.concept_identifier,
                "in_scheme": concept.in_scheme,
            }
        )

    def _generate_v2_provenance(self, document: Dict) -> List:
        obj_list = []
        for provenance in self.provenance.all():
            data = {
                "title": provenance.title,
                "description": provenance.description,
            }

            if provenance.spatial:
                data["spatial"] = self._construct_v2_spatial(provenance.spatial)

            if hasattr(provenance, "temporal"):
                data["temporal"] = self._convert_v3_temporal_to_v2(provenance.temporal)

            if variables := provenance.variables.all():
                data["variable"] = [
                    omit_none(
                        {
                            "pref_label": variable.pref_label,
                            "description": variable.description,
                            "concept": self._construct_v2_concept(variable.concept),
                            "universe": self._construct_v2_concept(variable.universe),
                            "representation": variable.representation,
                        }
                    )
                    for variable in variables
                ]
            if provenance.preservation_event:
                data["preservation_event"] = {
                    "pref_label": provenance.preservation_event.pref_label,
                    "identifier": provenance.preservation_event.url,
                    "in_scheme": provenance.preservation_event.in_scheme,
                }
            if provenance.lifecycle_event:
                data["lifecycle_event"] = {
                    "pref_label": provenance.lifecycle_event.pref_label,
                    "identifier": provenance.lifecycle_event.url,
                    "in_scheme": provenance.lifecycle_event.in_scheme,
                }
            if provenance.event_outcome:
                data["event_outcome"] = {
                    "pref_label": provenance.event_outcome.pref_label,
                    "identifier": provenance.event_outcome.url,
                    "in_scheme": provenance.event_outcome.in_scheme,
                }
            if provenance.outcome_description:
                data["outcome_description"] = provenance.outcome_description

            if provenance.is_associated_with.all().count() != 0:
                data["was_associated_with"] = []
                for association in provenance.is_associated_with.all():
                    data["was_associated_with"].append(association.as_v2_data())

            obj_list.append(omit_none(data))
        if len(obj_list) != 0:
            document["research_dataset"]["provenance"] = obj_list
        return obj_list

    def _generate_v2_access_rights(self) -> Optional[Dict]:
        if not self.access_rights:
            return None
        data = {
            "access_type": {
                "in_scheme": self.access_rights.access_type.in_scheme,
                "identifier": self.access_rights.access_type.url,
                "pref_label": self.access_rights.access_type.pref_label,
            },
            "license": [],
        }

        if available := getattr(self.access_rights, "available", None):
            data["available"] = available.isoformat()

        if description := self.access_rights.description:
            data["description"] = description

        for license in self.access_rights.license.all():
            row = {
                "identifier": license.reference.url,
                "title": license.title or license.reference.pref_label,
                "description": license.description,
            }
            if custom_url := license.custom_url:
                row["license"] = custom_url
            data["license"].append(row)
        for res_grounds in self.access_rights.restriction_grounds.all():
            if not data.get("restriction_grounds"):
                data["restriction_grounds"] = []
            data["restriction_grounds"].append(
                {
                    "identifier": res_grounds.url,
                    "pref_label": res_grounds.pref_label,
                    "in_scheme": res_grounds.in_scheme,
                }
            )
        return data

    def _add_funder_type(self, project, funder_type):
        if funder_type:
            project["funder_type"] = {
                "pref_label": funder_type.pref_label,
                "identifier": funder_type.url,
                "in_scheme": funder_type.in_scheme,
            }

    def _add_funder_organization(self, project, funder_organization):
        if funder_organization:
            if "has_funding_agency" not in project:
                project["has_funding_agency"] = []
            project["has_funding_agency"].append(funder_organization.as_v2_data())

    def _add_funder_identifier(self, project, funder_identifier):
        if funder_identifier:
            project["has_funder_identifier"] = funder_identifier

    def _add_funder_source_organizations(self, project, participating_organizations):
        for participating_organization in participating_organizations:
            if "source_organization" not in project:
                project["source_organization"] = []
            project["source_organization"].append(participating_organization.as_v2_data())

    def _generate_v2_dataset_projects(self) -> List:
        obj_list = []
        for dataset_project in self.projects.all():
            project = {
                "name": dataset_project.title,
                "identifier": dataset_project.project_identifier,
                "has_funding_agency": [],
                "source_organization": [],
            }

            funder_type = None
            funder_organization = None
            funder_identifier = None

            for fund in dataset_project.funding.all():
                if funder := fund.funder:
                    funder_type = funder.funder_type
                    funder_organization = funder.organization
                    self._add_funder_type(project, funder_type)
                    self._add_funder_organization(project, funder_organization)
                funder_identifier = fund.funding_identifier
                self._add_funder_identifier(project, funder_identifier)

            self._add_funder_source_organizations(
                project,
                participating_organizations=dataset_project.participating_organizations.all(),
            )

            obj_list.append(project)
        return obj_list

    def _construct_v2_removed_field(self):
        if self.removed:
            return True
        else:
            return False

    def _construct_v2_checksum(self, checksum: str) -> Optional[dict]:
        if not checksum:
            return None

        try:
            algo, value = checksum.split(":", maxsplit=1)
        except ValueError:
            algo = None
            value = checksum

        v2_algos = {
            "md5": "MD5",
            "sha1": "SHA-1",
            "sha224": "SHA-224",
            "sha256": "SHA-384",
            "sha512": "SHA-512",
        }
        v2_algo = v2_algos.get(algo, "OTHER")
        return {
            "checksum_value": value,
            "algorithm": v2_algo,
        }

    def _construct_v2_remote_resource(self, remote_resource) -> dict:
        access_url = None
        if url := remote_resource.access_url:
            access_url = {"identifier": url}
        download_url = None
        if url := remote_resource.download_url:
            download_url = {"identifier": url}

        return omit_none(
            {
                "title": single_translation(remote_resource.title),
                "description": single_translation(remote_resource.description),
                "checksum": self._construct_v2_checksum(remote_resource.checksum),
                "mediatype": remote_resource.mediatype,
                "use_category": self._construct_v2_refdata_object(remote_resource.use_category),
                "file_type": self._construct_v2_refdata_object(remote_resource.file_type),
                "access_url": access_url,
                "download_url": download_url,
            }
        )

    def _generate_v2_remote_resources(self, document) -> List:
        obj_list = [
            self._construct_v2_remote_resource(resource)
            for resource in self.remote_resources.all()
        ]
        if obj_list:
            document["research_dataset"]["remote_resources"] = obj_list
        return obj_list

    def _generate_v2_rems_fields(self, document):
        # REMS fields not supported in V3 yet, use values from dataset_json if available
        if legacydataset := getattr(self, "legacydataset", None):
            data = legacydataset.dataset_json
            if rems_identifier := data.get("rems_identifier"):
                document["rems_identifier"] = rems_identifier
            if access_granter := data.get("access_granter"):
                document["access_granter"] = access_granter

    def add_actor(self, role: str, document: Dict):
        actors = [actor for actor in self.actors.all() if role in actor.roles]
        if not actors:
            return
        if role != "publisher":
            document["research_dataset"][role] = []
        for dataset_actor in actors:
            data = dataset_actor.as_v2_data()
            if role == "publisher":
                document["research_dataset"][role] = data
            else:
                document["research_dataset"][role].append(data)

    def _get_version_identifiers(self) -> List[str]:
        if not self.dataset_versions:
            return [str(self.id)]
        return sorted(
            self.dataset_versions.datasets(manager="all_objects").values_list(
                Cast("id", output_field=CharField()), flat=True
            )
        )

    def _get_editor_usernames(self) -> List[str]:
        return list(
            self.permissions.editors.exclude(fairdata_username__isnull=True).values_list(
                "username", flat=True
            )
        )

    def _generate_v2_preservation_fields(self, doc):
        if preservation := self.preservation:
            values = {}
            if preservation.contract:
                values["contract"] = {"id": preservation.contract.legacy_id}
            values["preservation_state"] = preservation.state
            if values["preservation_state"] == -1:
                values["preservation_state"] = 0  # Default state is 0 in V2
            values["preservation_identifier"] = preservation.preservation_identifier
            values["preservation_state_modified"] = preservation.state_modified
            values["preservation_description"] = single_translation(preservation.description)
            values["preservation_reason_description"] = preservation.reason_description
            if version := preservation.dataset_version:
                values["preservation_dataset_version"] = str(version.dataset.id)
            if version := getattr(preservation, "dataset_origin_version", None):
                values["preservation_dataset_origin_version"] = str(version.dataset.id)
            doc.update(omit_empty(values))

    def as_v2_dataset(self) -> Dict:
        self.ensure_prefetch()
        research_dataset = {
            "title": self.title,
            "description": self.description,
            "modified": self.modified.isoformat(),
            "preferred_identifier": self.persistent_identifier,
            "keyword": self.keyword,
            "access_rights": self._generate_v2_access_rights() if self.access_rights else None,
            "is_output_of": self._generate_v2_dataset_projects(),
            "bibliographic_citation": self.bibliographic_citation,
        }

        if file_set := getattr(self, "file_set", None):
            research_dataset["total_files_byte_size"] = file_set.total_files_size
        if self.issued:
            research_dataset["issued"] = self.issued.isoformat()
        doc = {
            "identifier": str(self.id),
            "api_meta": {"version": self.api_version},
            "deprecated": self.deprecated is not None,
            "state": self.state,
            "cumulative_state": self.cumulative_state.real,
            "date_created": self.created.isoformat(),
            "removed": self._construct_v2_removed_field(),
            "research_dataset": research_dataset,
            "version_identifiers": self._get_version_identifiers(),
            "editor_usernames": self._get_editor_usernames(),
        }
        if self.deprecated:
            doc["date_deprecated"] = self.deprecated.isoformat()
        if self.removed:
            doc["date_removed"] = self.removed.isoformat()
        if self.metadata_owner:
            if hasattr(self.metadata_owner, "user"):
                doc["metadata_provider_user"] = self.metadata_owner.user.username
            else:
                doc["metadata_provider_user"] = "None"
            if hasattr(self.metadata_owner, "organization"):
                doc["metadata_provider_org"] = self.metadata_owner.organization
                doc["metadata_owner_org"] = self.metadata_owner.organization
            else:
                doc["metadata_provider_org"] = "None"
                doc["metadata_owner_org"] = "None"

        if self.data_catalog:
            doc["data_catalog"] = {"identifier": self.data_catalog.id}
        if self.cumulation_started:
            doc["date_cumulation_started"] = self.cumulation_started.isoformat()
        if self.cumulation_ended:
            doc["date_cumulation_ended"] = self.cumulation_ended.isoformat()
        if self.last_cumulative_addition:
            doc["date_last_cumulative_addition"] = self.last_cumulative_addition.isoformat()
        if self.last_modified_by:
            doc["user_modified"] = self.last_modified_by.username

        self._generate_v2_other_identifiers(doc)
        self._generate_v2_ref_data_field(
            "language", doc, pref_label_text="title", omit_scheme=True
        )
        self._generate_v2_ref_data_field("field_of_science", doc)
        self._generate_v2_ref_data_field("infrastructure", doc)
        self._generate_v2_ref_data_field("theme", doc)
        self._generate_v2_spatial(doc)
        self._generate_v2_temporal(doc)
        self._generate_v2_provenance(doc)
        self._generate_v2_relation(doc)
        self._generate_v2_remote_resources(doc)
        self._generate_v2_rems_fields(doc)
        self._generate_v2_preservation_fields(doc)

        for role in ["creator", "publisher", "curator", "contributor", "rights_holder"]:
            self.add_actor(role, doc)

        # Remove empty values from research_dataset
        doc["research_dataset"] = omit_empty(research_dataset, recurse=True)
        return doc